Photoperiod responsiveness is a key factor limiting the geographic distribution of cultivated soybean and its wild ancestor.In particular,the genetic basis of the adaptation in wild soybean remains poorly understood.I...Photoperiod responsiveness is a key factor limiting the geographic distribution of cultivated soybean and its wild ancestor.In particular,the genetic basis of the adaptation in wild soybean remains poorly understood.In this study,by combining whole-genome resequencing and genome-wide association studies we identified a novel locus,Time of Flowering 5(Tof5),which promotes flowering and enhances adaptation to high latitudes in both wild and cultivated soybean.By genomic,genetic and transgenic analyses we showed that Tof5 en-codes a homolog of Arabidopsis thaliana FRUITFULL(FUL).Importantly,further analyses suggested that different alleles of Tof5 have undergone parallel selection.The Tof5H1 allele was strongly selected by humans after the early domestication of cultivated soybean,while Tof5H2 allele was naturally selected in wild soybean,and in each case facilitating adaptation to high latitudes.Moreover,we found that the key flowering repressor E1 suppresses the transcription of Tof5 by binding to its promoter.In turn,Tof5 physically associates with the promoters of two important FLOWERING LOCUS T(FT),FT2a and FT5a,to upregulate their transcription and promote flowering under long photoperiods.Collectively,ourfindings provide insights into how wild soybean adapted to high latitudes through natural selection and indicate that cultivated soybean underwent changes in the same gene but evolved a distinct allele that was artificially selected after domestication.展开更多
Tibetans are welt adapted to high-altitude hypoxia. Previous genome-wide scans have reported many candidate genes for this adaptation, but only a few have been studied. Here we report on a hypoxia gene (GCH1, GTP-cyc...Tibetans are welt adapted to high-altitude hypoxia. Previous genome-wide scans have reported many candidate genes for this adaptation, but only a few have been studied. Here we report on a hypoxia gene (GCH1, GTP-cyclohydrolase I), involved in maintaining nitric oxide synthetase (NOS) function and normal blood pressure, that harbors many potentially adaptive variants in Tibetans. We resequenced an 80.8 kb fragment covering the entire gene region of GCH1 in 50 unrelated Tibetans Combined with previously published data, we demonstrated many GCHI variants showing deep divergence between highlander Tibetans and lowlander Han Chinese. Neutrality tests confirmed a signal of positive Darwinian selection on GCH1 in Tibetans. Moreover, association analysis indicated that the Tibetan version of GCH1 was significantly associated with multiple physiological traits in Tibetans, including blood nitric oxide concentration, blood oxygen saturation and hemoglobin concentration. Taken together, we propose that GCH1 plays a role in the genetic adaptation of Tibetans to high altitude hypoxia.展开更多
The temperate-tropical division of early maize germplasms to different agricultural environments was argu- ably the greatest adaptation process associated with the success and near ubiquitous importance of global maiz...The temperate-tropical division of early maize germplasms to different agricultural environments was argu- ably the greatest adaptation process associated with the success and near ubiquitous importance of global maize production. Deciphering this history is challenging, but new insight has been gained from examining 558 529 single nucleotide polymorphisms, expression data of 28 769 genes, and 662 traits collected from 368 diverse temperate and tropical maize inbred lines in this study. This is a new attempt to systematically exploit the mechanisms of the adaptation process in maize. Our results indicate that divergence between tropical and temperate lines apparently occurred 3400-6700 years ago. Seven hundred and one genomic selection signals and transcriptomic variants including 2700 differentially expressed individual genes and 389 rewired co-expression network genes were identified. These candidate signals were found to be functionally related to stress responses, and most were associated with directionally selected traits, which may have been an advantage under widely varying environmental conditions faced by maize as it was migrated away from its domestication center. Our study also clearly indicates that such stress adaptation could involve evolution of protein-coding sequences as well as transcriptome-level regulatory changes. The latter process may be a more flexible and dynamic way for maize to adapt to environmental changes along its short evolutionary history.展开更多
Tibeto-Burman(TB)people have endeavored to adapt to the hypoxic,cold,and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period...Tibeto-Burman(TB)people have endeavored to adapt to the hypoxic,cold,and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period.However,the full landscape of genetic history and biological adaptation of geographically diverse TB-speaking people,as well as their interaction mechanism,remain unknown.Here,we generate a whole-genome meta-database of 500 individuals from 39 TB-speaking populations and present a comprehensive landscape of genetic diversity,admixture history,and differentiated adaptative features of geographically different TB-speaking people.We identify genetic differentiation related to geography and language among TB-speaking people,consistent with their differentiated admixture process with incoming or indigenous ancestral source populations.A robust genetic connection between the Tibetan-Yi corridor and the ancient Yellow River people supports their Northern China origin hypothesis.We finally report substructure-related differentiated biological adaptative signatures between highland Tibetans and Loloish speakers.Adaptative signatures associated with the physical pigmentation(EDAR and SLC24A5)and metabolism(ALDH9A1)are identified in Loloish people,which differed from the high-altitude adaptative genetic architecture in Tibetan.TB-related genomic resources provide new insights into the genetic basis of biological adaptation and better reference for the anthropologically informed sampling design in biomedical and genomic cohort research.展开更多
基金supported by the National Natural Science Foundation of China(grant nos.32090065 and 32001508 to L.D.,32090064 and 31725021 to F.K.,31930083 to B.L,31901568 to Q.C,32022062 to S.Lu.,32001502 to Y,Z)and also supported by the Major Program of Guangdong Basic and Applied FResearch(grant no.2019B030302006 to F.K.andB.L).
文摘Photoperiod responsiveness is a key factor limiting the geographic distribution of cultivated soybean and its wild ancestor.In particular,the genetic basis of the adaptation in wild soybean remains poorly understood.In this study,by combining whole-genome resequencing and genome-wide association studies we identified a novel locus,Time of Flowering 5(Tof5),which promotes flowering and enhances adaptation to high latitudes in both wild and cultivated soybean.By genomic,genetic and transgenic analyses we showed that Tof5 en-codes a homolog of Arabidopsis thaliana FRUITFULL(FUL).Importantly,further analyses suggested that different alleles of Tof5 have undergone parallel selection.The Tof5H1 allele was strongly selected by humans after the early domestication of cultivated soybean,while Tof5H2 allele was naturally selected in wild soybean,and in each case facilitating adaptation to high latitudes.Moreover,we found that the key flowering repressor E1 suppresses the transcription of Tof5 by binding to its promoter.In turn,Tof5 physically associates with the promoters of two important FLOWERING LOCUS T(FT),FT2a and FT5a,to upregulate their transcription and promote flowering under long photoperiods.Collectively,ourfindings provide insights into how wild soybean adapted to high latitudes through natural selection and indicate that cultivated soybean underwent changes in the same gene but evolved a distinct allele that was artificially selected after domestication.
基金supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB13010000)the National Natural Science Foundation of China(91631306 to BS,31671329 to XQ,31460287 to Ou.,31501013 to HZ and 31360032 to CC)+2 种基金the National 973 program(2012CB518202 to TW)the State Key Laboratory of Genetic Resources and Evolution(GREKF15-05,GREKF16-04)the Zhufeng Scholar Program of Tibetan University
文摘Tibetans are welt adapted to high-altitude hypoxia. Previous genome-wide scans have reported many candidate genes for this adaptation, but only a few have been studied. Here we report on a hypoxia gene (GCH1, GTP-cyclohydrolase I), involved in maintaining nitric oxide synthetase (NOS) function and normal blood pressure, that harbors many potentially adaptive variants in Tibetans. We resequenced an 80.8 kb fragment covering the entire gene region of GCH1 in 50 unrelated Tibetans Combined with previously published data, we demonstrated many GCHI variants showing deep divergence between highlander Tibetans and lowlander Han Chinese. Neutrality tests confirmed a signal of positive Darwinian selection on GCH1 in Tibetans. Moreover, association analysis indicated that the Tibetan version of GCH1 was significantly associated with multiple physiological traits in Tibetans, including blood nitric oxide concentration, blood oxygen saturation and hemoglobin concentration. Taken together, we propose that GCH1 plays a role in the genetic adaptation of Tibetans to high altitude hypoxia.
文摘The temperate-tropical division of early maize germplasms to different agricultural environments was argu- ably the greatest adaptation process associated with the success and near ubiquitous importance of global maize production. Deciphering this history is challenging, but new insight has been gained from examining 558 529 single nucleotide polymorphisms, expression data of 28 769 genes, and 662 traits collected from 368 diverse temperate and tropical maize inbred lines in this study. This is a new attempt to systematically exploit the mechanisms of the adaptation process in maize. Our results indicate that divergence between tropical and temperate lines apparently occurred 3400-6700 years ago. Seven hundred and one genomic selection signals and transcriptomic variants including 2700 differentially expressed individual genes and 389 rewired co-expression network genes were identified. These candidate signals were found to be functionally related to stress responses, and most were associated with directionally selected traits, which may have been an advantage under widely varying environmental conditions faced by maize as it was migrated away from its domestication center. Our study also clearly indicates that such stress adaptation could involve evolution of protein-coding sequences as well as transcriptome-level regulatory changes. The latter process may be a more flexible and dynamic way for maize to adapt to environmental changes along its short evolutionary history.
基金the National Natural Science Foundation of China(82202078)the Center for Archaeological Science of Sichuan University(23SASA01).
文摘Tibeto-Burman(TB)people have endeavored to adapt to the hypoxic,cold,and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period.However,the full landscape of genetic history and biological adaptation of geographically diverse TB-speaking people,as well as their interaction mechanism,remain unknown.Here,we generate a whole-genome meta-database of 500 individuals from 39 TB-speaking populations and present a comprehensive landscape of genetic diversity,admixture history,and differentiated adaptative features of geographically different TB-speaking people.We identify genetic differentiation related to geography and language among TB-speaking people,consistent with their differentiated admixture process with incoming or indigenous ancestral source populations.A robust genetic connection between the Tibetan-Yi corridor and the ancient Yellow River people supports their Northern China origin hypothesis.We finally report substructure-related differentiated biological adaptative signatures between highland Tibetans and Loloish speakers.Adaptative signatures associated with the physical pigmentation(EDAR and SLC24A5)and metabolism(ALDH9A1)are identified in Loloish people,which differed from the high-altitude adaptative genetic architecture in Tibetan.TB-related genomic resources provide new insights into the genetic basis of biological adaptation and better reference for the anthropologically informed sampling design in biomedical and genomic cohort research.