Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powe...Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.展开更多
To improve the resource utilization ratio and shorten the recovery time of the shared path protection with differentiated reliability (SPP-DiR) algorithm, an algorithm called dynamic shared segment protection with d...To improve the resource utilization ratio and shorten the recovery time of the shared path protection with differentiated reliability (SPP-DiR) algorithm, an algorithm called dynamic shared segment protection with differentiated reliability (DSSP-DiR) is proposed for survivable GMPLS networks. In the proposed algorithm, a primary path is dynamically divided into several segments according to the differentiated reliability requirements of the customers. In the SPP-DiR algorithm, the whole primary path should be protected, while in the DSSP- DiR algorithm, only partial segments on the primary path need to be protected, which can reduce more backup bandwidths than that in the SPP-DiR algorithm. Simulation results show that the DSSP-DiR algorithm achieves higher resource utilization ratio, lower protection failure probability, and shorter recovery time than the SPP-DiR algorithm.展开更多
基金This work was financially supported by the Opening Project of National Local Joint Laboratory for Advanced Textile Processing and Clean Production(FX2022006)Guiding Project of Natural Science Foundation of Hubei province(2022CFC072)+2 种基金Guiding Project of Scientific Research Plan of Education Department of Hubei Province(B2022081)Shenghong Key Scientific Research Project of Emergency Support and Public Safety Fiber Materials and Products(2022-rw0101)Science and Technology Guidance Program of China National Textile and Apparel Council(2022002).
文摘Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.
基金supported by the National Natural Science Foundation of China (60673142)Applied Basic Research Project of Sichuan Province (2006J13-067)
文摘To improve the resource utilization ratio and shorten the recovery time of the shared path protection with differentiated reliability (SPP-DiR) algorithm, an algorithm called dynamic shared segment protection with differentiated reliability (DSSP-DiR) is proposed for survivable GMPLS networks. In the proposed algorithm, a primary path is dynamically divided into several segments according to the differentiated reliability requirements of the customers. In the SPP-DiR algorithm, the whole primary path should be protected, while in the DSSP- DiR algorithm, only partial segments on the primary path need to be protected, which can reduce more backup bandwidths than that in the SPP-DiR algorithm. Simulation results show that the DSSP-DiR algorithm achieves higher resource utilization ratio, lower protection failure probability, and shorter recovery time than the SPP-DiR algorithm.