3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc...3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.展开更多
Two new size factors of cross-section hollow coefficient and bending degree are introduced to reveal the size effect of bending forming of bimetallic composite tube.Hollow coefficient and bending degree can limit the ...Two new size factors of cross-section hollow coefficient and bending degree are introduced to reveal the size effect of bending forming of bimetallic composite tube.Hollow coefficient and bending degree can limit the commonly used bent tube to the size description range of(0,2.00).The evolution laws of the cross-section distortion forms in the hollow coefficient-bending degree interval are revealed as well as the action of the mandrel-cores on the size effect.Results show the mandrel-cores filling can expand the forming limit of the bent tube,but also bring two other forming defects of wrinkle and rupture.The identification factor(hollow coefficient multiply bending degree)provides a method for querying the cross-section distortion forms of all composite bending tubes.In the identification factor interval(0,1.00),the distribution area of bending forming defects of the composite tube is continuous.The thin-walled composite bending tube collapses when identification factor in(0,0.39),wrinkles when identification factor in[0.39,0.50),and ruptures when identification factor in[0.50,1.00).The mathematical model of size effect is derived,by which the average cross-section distortion rate is found to distribute like a radial leaf in the hollow coefficient-bending degree qualified forming space.The best forming zone is hollow coefficient 0.46-0.68,and bending degree 0.25-0.47.展开更多
In order to enhance the dimension precision of bent part, advanced bending technologies is requested recently. Rotary stretch bending(RSB) is a suitable technology to realize high precision of bent part. The effect of...In order to enhance the dimension precision of bent part, advanced bending technologies is requested recently. Rotary stretch bending(RSB) is a suitable technology to realize high precision of bent part. The effect of processing parameters, namely the side pressure and the stretching force, on the dimension precision of aluminium profile RSB part was studied by finite element method. The numerical simulation of the U-shaped aluminium profile RSB was carried out, and the validity of the simulation was checked. Parametric analysis shows that the section distortion of the U-shaped profile LY12M bent part decreases with the increasing of the side pressure, whereas the springback of curvature increases, and that both of the section distortion and the springback of curvature decrease with the increasing of the stretching force, moreover, the uniformity of curvature of the bent part is clearly enhanced with the increasing of the stretching force. The results above prove that RSB technology can better improve the dimension precision of aluminium profile bent part.展开更多
基金the National Natural Science Foundation of China(Nos.52005244,U20A20275)the Natural Science Foundation of Hunan Province,China(Nos.2021JJ30573,2023JJ60193)the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China(No.31715011)。
文摘3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.
基金co-supported by the National Natural Science Foundation of China(Nos.51601070 and 51875263)the Open Project of Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology,China(No.PEMT202102)the Natural Science Foundation of Jiangsu Province,China(No.BK20181447)。
文摘Two new size factors of cross-section hollow coefficient and bending degree are introduced to reveal the size effect of bending forming of bimetallic composite tube.Hollow coefficient and bending degree can limit the commonly used bent tube to the size description range of(0,2.00).The evolution laws of the cross-section distortion forms in the hollow coefficient-bending degree interval are revealed as well as the action of the mandrel-cores on the size effect.Results show the mandrel-cores filling can expand the forming limit of the bent tube,but also bring two other forming defects of wrinkle and rupture.The identification factor(hollow coefficient multiply bending degree)provides a method for querying the cross-section distortion forms of all composite bending tubes.In the identification factor interval(0,1.00),the distribution area of bending forming defects of the composite tube is continuous.The thin-walled composite bending tube collapses when identification factor in(0,0.39),wrinkles when identification factor in[0.39,0.50),and ruptures when identification factor in[0.50,1.00).The mathematical model of size effect is derived,by which the average cross-section distortion rate is found to distribute like a radial leaf in the hollow coefficient-bending degree qualified forming space.The best forming zone is hollow coefficient 0.46-0.68,and bending degree 0.25-0.47.
基金Project(2005CB724100) supported by the National Basic Research Program of ChinaProject(50605043) supported by the National Natural Science Foundation of China
文摘In order to enhance the dimension precision of bent part, advanced bending technologies is requested recently. Rotary stretch bending(RSB) is a suitable technology to realize high precision of bent part. The effect of processing parameters, namely the side pressure and the stretching force, on the dimension precision of aluminium profile RSB part was studied by finite element method. The numerical simulation of the U-shaped aluminium profile RSB was carried out, and the validity of the simulation was checked. Parametric analysis shows that the section distortion of the U-shaped profile LY12M bent part decreases with the increasing of the side pressure, whereas the springback of curvature increases, and that both of the section distortion and the springback of curvature decrease with the increasing of the stretching force, moreover, the uniformity of curvature of the bent part is clearly enhanced with the increasing of the stretching force. The results above prove that RSB technology can better improve the dimension precision of aluminium profile bent part.