As a supplementary of [Xu L. Front. Electr. Electron. Eng. China, 2010, 5(3): 281-328], this paper outlines current status of efforts made on Bayesian Ying- Yang (BYY) harmony learning, plus gene analysis appli- ...As a supplementary of [Xu L. Front. Electr. Electron. Eng. China, 2010, 5(3): 281-328], this paper outlines current status of efforts made on Bayesian Ying- Yang (BYY) harmony learning, plus gene analysis appli- cations. At the beginning, a bird's-eye view is provided via Gaussian mixture in comparison with typical learn- ing algorithms and model selection criteria. Particularly, semi-supervised learning is covered simply via choosing a scalar parameter. Then, essential topics and demand- ing issues about BYY system design and BYY harmony learning are systematically outlined, with a modern per- spective on Yin-Yang viewpoint discussed, another Yang factorization addressed, and coordinations across and within Ying-Yang summarized. The BYY system acts as a unified framework to accommodate unsupervised, su- pervised, and semi-supervised learning all in one formu- lation, while the best harmony learning provides novelty and strength to automatic model selection. Also, mathe- matical formulation of harmony functional has been ad- dressed as a unified scheme for measuring the proximity to be considered in a BYY system, and used as the best choice among others. Moreover, efforts are made on a number of learning tasks, including a mode-switching factor analysis proposed as a semi-blind learning frame- work for several types of independent factor analysis, a hidden Markov model (HMM) gated temporal fac- tor analysis suggested for modeling piecewise stationary temporal dependence, and a two-level hierarchical Gaus- sian mixture extended to cover semi-supervised learning, as well as a manifold learning modified to facilitate au- tomatic model selection. Finally, studies are applied to the problems of gene analysis, such as genome-wide asso- ciation, exome sequencing analysis, and gene transcrip- tional regulation.展开更多
[目的]建立目标基因测序技术,对后纵韧带骨化(ossification of the posterior longitud inalligament,OPLL)患者的11个已知致病基因进行突变筛查,探讨OPLL与致病基因突变的关系。[方法]提取6例OPLL患者外周血全基因组DNA,利用Gen...[目的]建立目标基因测序技术,对后纵韧带骨化(ossification of the posterior longitud inalligament,OPLL)患者的11个已知致病基因进行突变筛查,探讨OPLL与致病基因突变的关系。[方法]提取6例OPLL患者外周血全基因组DNA,利用GenCap目标基因捕获技术(北京迈基诺公司),设计骨形态发生蛋白-2(bone morphogenetic pro—tein2,BMP2)、骨形态发生蛋白-4(bone morphogenetic protein4,BMP4)、骨形态发生蛋白-9(bone morphogenetic protein 9,BMP9)、Ⅺ型胶原蛋白以(collagen type XI alpha 2,COLllA2)、Ⅵ型胶原蛋白理1(collagen type VIM pha1,COL6A1)、核苷酸焦磷酸酶(ectonucleotide pyrophosphatase/phosphodiesterase 1,ENPPl)、成纤维细胞生长因子2(fibroblast growth factor 2,FGF2)、成纤维细胞生长因子受体1(fibroblast growth factor receptor 1,FGFRl)、成纤维细胞生长因子受体2(fibroblast growth factor receptor2,FGFR2)、转化生长因子一β3(transforming growth factor beta3,TGFB3)和转化生长因子一8受体2(transforming growth factor beta receptorII,TGFBR2)基因外显子区域特异性捕获探针,与基因组DNA文库进行杂交,将目标基因组区域的DNA片段进行富集后,再利用illumina hiseq2000第二代测序仪进行测序,通过数据分析,确定突变位点,对选定的突变位点用Sanger测序法进行验证。[结果]设计合成的目标基因特异性捕获探针可有效地捕捉并富集基因组DNA的目标靶片段。目标区域平均测序深度为426.85~976.15,99.30%-100%目标区域覆盖度。在1例患者中发现COL6A1基因的1个错义突变,此位点检测结果与Sanger测序结果完全一致。[结论]目标基因测序技术成功发现了OPLL患者的致病基因突变。该方法快速而有效,对深入研究OPLL的分子病因学有重要意义。展开更多
文摘As a supplementary of [Xu L. Front. Electr. Electron. Eng. China, 2010, 5(3): 281-328], this paper outlines current status of efforts made on Bayesian Ying- Yang (BYY) harmony learning, plus gene analysis appli- cations. At the beginning, a bird's-eye view is provided via Gaussian mixture in comparison with typical learn- ing algorithms and model selection criteria. Particularly, semi-supervised learning is covered simply via choosing a scalar parameter. Then, essential topics and demand- ing issues about BYY system design and BYY harmony learning are systematically outlined, with a modern per- spective on Yin-Yang viewpoint discussed, another Yang factorization addressed, and coordinations across and within Ying-Yang summarized. The BYY system acts as a unified framework to accommodate unsupervised, su- pervised, and semi-supervised learning all in one formu- lation, while the best harmony learning provides novelty and strength to automatic model selection. Also, mathe- matical formulation of harmony functional has been ad- dressed as a unified scheme for measuring the proximity to be considered in a BYY system, and used as the best choice among others. Moreover, efforts are made on a number of learning tasks, including a mode-switching factor analysis proposed as a semi-blind learning frame- work for several types of independent factor analysis, a hidden Markov model (HMM) gated temporal fac- tor analysis suggested for modeling piecewise stationary temporal dependence, and a two-level hierarchical Gaus- sian mixture extended to cover semi-supervised learning, as well as a manifold learning modified to facilitate au- tomatic model selection. Finally, studies are applied to the problems of gene analysis, such as genome-wide asso- ciation, exome sequencing analysis, and gene transcrip- tional regulation.
文摘[目的]建立目标基因测序技术,对后纵韧带骨化(ossification of the posterior longitud inalligament,OPLL)患者的11个已知致病基因进行突变筛查,探讨OPLL与致病基因突变的关系。[方法]提取6例OPLL患者外周血全基因组DNA,利用GenCap目标基因捕获技术(北京迈基诺公司),设计骨形态发生蛋白-2(bone morphogenetic pro—tein2,BMP2)、骨形态发生蛋白-4(bone morphogenetic protein4,BMP4)、骨形态发生蛋白-9(bone morphogenetic protein 9,BMP9)、Ⅺ型胶原蛋白以(collagen type XI alpha 2,COLllA2)、Ⅵ型胶原蛋白理1(collagen type VIM pha1,COL6A1)、核苷酸焦磷酸酶(ectonucleotide pyrophosphatase/phosphodiesterase 1,ENPPl)、成纤维细胞生长因子2(fibroblast growth factor 2,FGF2)、成纤维细胞生长因子受体1(fibroblast growth factor receptor 1,FGFRl)、成纤维细胞生长因子受体2(fibroblast growth factor receptor2,FGFR2)、转化生长因子一β3(transforming growth factor beta3,TGFB3)和转化生长因子一8受体2(transforming growth factor beta receptorII,TGFBR2)基因外显子区域特异性捕获探针,与基因组DNA文库进行杂交,将目标基因组区域的DNA片段进行富集后,再利用illumina hiseq2000第二代测序仪进行测序,通过数据分析,确定突变位点,对选定的突变位点用Sanger测序法进行验证。[结果]设计合成的目标基因特异性捕获探针可有效地捕捉并富集基因组DNA的目标靶片段。目标区域平均测序深度为426.85~976.15,99.30%-100%目标区域覆盖度。在1例患者中发现COL6A1基因的1个错义突变,此位点检测结果与Sanger测序结果完全一致。[结论]目标基因测序技术成功发现了OPLL患者的致病基因突变。该方法快速而有效,对深入研究OPLL的分子病因学有重要意义。