Nitrate is the primary water-soluble macronutrient essential for plant growth that is converted from excess fish feeds,fish effluents,and degrading biomaterials on the aquaponic pond floor,and when aquacultural malpra...Nitrate is the primary water-soluble macronutrient essential for plant growth that is converted from excess fish feeds,fish effluents,and degrading biomaterials on the aquaponic pond floor,and when aquacultural malpractices occur,large amounts of it retain in the water system causing increase rate in eutrophication and toxifies fish and aquaculture plants.Recent nitrate sensor prototypes still require performing the additional steps of water sample deionization and dilution and were constructed with expensive materials.In response to the challenge of sensor enhancement and aquaponic water quality monitoring,this study developed sensitive,repeatable,and reproducible screen-printed graphite electrodes on polyvinyl chloride and parchment paper substrates with silver as electrode material and 60:40 graphite powder:nail polish formulated conductive ink for electrical traces,integrated with 9-gene genetic expression model as a function of peak anodic current and electrochemical test time for nitrate concentration prediction that is embedded into low-power Arduino ESP32 for in situ nitrate sensing in aquaponic pond water.Five SPE electrical traces were designed on the two types of substrates.Scanning electron microscopy with energy dispersive X-ray confirmed the electrode surface morphology.Electrochemical cyclic voltammetry using 10 to 100 mg/L KNO3 and water from three-depth regions of the actual pond established the electrochemical test time(10.5 s)and electrode potential(0.135 V)protocol necessary to produce peak current that corresponds to the strength of nitrate ions during redox.The findings from in situ testing revealed that the proposed sensors have strong linear predictions(R2=0.968 MSE=1.659 for nSPEv and R2=0.966 MSE=4.697 for nSPEp)in the range of 10 to 100 mg/L and best detection limit of 3.15μg/L,which are comparable to other sensors of more complex construction.The developed three-electrode electrochemical nitrate sensor confirms that it is reliable for both biosensing in controlled solutions and in sit展开更多
Antibiotic abuse in food processing could threaten human health via either direct pathogen or drug-resistant infection.To curb this situation,it is of vital significance to identify trace level of antibiotics in foods...Antibiotic abuse in food processing could threaten human health via either direct pathogen or drug-resistant infection.To curb this situation,it is of vital significance to identify trace level of antibiotics in foodstuffin a point-of-care inspection manner.Here,a smartphone-based electrochemical system was developed for the quantitation of chloramphenicol(CAP).The differential pulse voltammetric reduction of CAP was measured facilely on a piece of gold-deposited screen-printed electrode,which was docked onto a palm-sized detector with remote directives from a mobile APP of Bluetooth handshaking and digital display.Under optimal conditions,the target CAP could be determined in a range from 1 nmol/L to 5μmol/L with a detection limit of 0.25 nmol/L.Further tests on emulate samples demonstrated the miniaturized device could handle the food-screening scenarios with accuracy,convenience and quick response.展开更多
Okadaic acid(OA),a small molecule substance derived from shellfish,is one of the most widely distributed marine toxins with acute symptoms of vomiting and diarrhea after accidental ingestion.For this,there is an urgen...Okadaic acid(OA),a small molecule substance derived from shellfish,is one of the most widely distributed marine toxins with acute symptoms of vomiting and diarrhea after accidental ingestion.For this,there is an urgently need for sensitive and reliable methods to detect OA in real shellfish samples.In this study,a simple aptasensor based on screen-printed carbon electrode(SPCE)with modification of chitosan(CS)and gold nanoparticles(Au NPs)was designed for electrochemical determination of OA,and the electrode surface was modified with Au NPs by potential-sweeping electrodeposition,which greatly improved the electrochemical response.The entire detection and characterization process were carried out by cyclic voltammetry(CV)with a linear correlation in the range of 0.01-100 ng/m L and a limit of detection(LOD)of 6.7 pg/m L.Furthermore,recovery rates of 92.3-116%were obtained demonstrating excellent accuracy through the recovery trial of mussel and scallop samples.展开更多
Point-of-care testing(POCT)technology is highly desirable for clinical diagnosis,healthcare monitoring,food safety inspection,and environment surveillance,because it enables rapid detection anywhere,anytime,and by any...Point-of-care testing(POCT)technology is highly desirable for clinical diagnosis,healthcare monitoring,food safety inspection,and environment surveillance,because it enables rapid detection anywhere,anytime,and by anyone.Electrochemiluminescence(ECL)has been widely used in chemo-/bio analysis due to its advantages such as high sensitivity,simplicity,rapidity and easy to control,and is now attracting increasing attention for POCT applications.However,to realize the accurate on-site quantitation,it is still challenging to develop portable devices which can precisely collect,analyze,transmit and display the ECL signals.This review will focus on how to develop a portable ECL device by summarizing recent examples and analyzing their key components part by part.Then the possible solutions to the existing challenges in the development and applications of portable ECL devices are summarized and discussed in detail,followed by offering future perspectives.We attempted to provide an appealing viewpoint to inspire interested researchers to comprehend and explore portable ECL sensing systems for practical applications and even commercialization.展开更多
基金the Philippines’Department of Science and Technology-Engineering Research and Development for Technology program,the Intelligent Systems Laboratory and the iNano Laboratory of the De La Salle University,the Fundação para a Ciência e a Tecnologia(FCT)for funding MARE(Marine and Environmental Sciences Centre,UIDB/04292/2020 and UIDB/04292/2020)ARNET(Aquatic Research Infrastructure Network Associated Laboratory,LA/P/0069/2020)B.Duarte researcher contract(CEECIND/00511/2017).
文摘Nitrate is the primary water-soluble macronutrient essential for plant growth that is converted from excess fish feeds,fish effluents,and degrading biomaterials on the aquaponic pond floor,and when aquacultural malpractices occur,large amounts of it retain in the water system causing increase rate in eutrophication and toxifies fish and aquaculture plants.Recent nitrate sensor prototypes still require performing the additional steps of water sample deionization and dilution and were constructed with expensive materials.In response to the challenge of sensor enhancement and aquaponic water quality monitoring,this study developed sensitive,repeatable,and reproducible screen-printed graphite electrodes on polyvinyl chloride and parchment paper substrates with silver as electrode material and 60:40 graphite powder:nail polish formulated conductive ink for electrical traces,integrated with 9-gene genetic expression model as a function of peak anodic current and electrochemical test time for nitrate concentration prediction that is embedded into low-power Arduino ESP32 for in situ nitrate sensing in aquaponic pond water.Five SPE electrical traces were designed on the two types of substrates.Scanning electron microscopy with energy dispersive X-ray confirmed the electrode surface morphology.Electrochemical cyclic voltammetry using 10 to 100 mg/L KNO3 and water from three-depth regions of the actual pond established the electrochemical test time(10.5 s)and electrode potential(0.135 V)protocol necessary to produce peak current that corresponds to the strength of nitrate ions during redox.The findings from in situ testing revealed that the proposed sensors have strong linear predictions(R2=0.968 MSE=1.659 for nSPEv and R2=0.966 MSE=4.697 for nSPEp)in the range of 10 to 100 mg/L and best detection limit of 3.15μg/L,which are comparable to other sensors of more complex construction.The developed three-electrode electrochemical nitrate sensor confirms that it is reliable for both biosensing in controlled solutions and in sit
基金financially supported by the National Key Research and Development Program of China for International Science&Innovation Cooperation Major Project between Governments(2018YFE0113200)National Natural Science Foundation of China(21874071,22104058)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0281)Fundamental Research Funds for the Central Universities(30921013112,30920021125,30922010501)
文摘Antibiotic abuse in food processing could threaten human health via either direct pathogen or drug-resistant infection.To curb this situation,it is of vital significance to identify trace level of antibiotics in foodstuffin a point-of-care inspection manner.Here,a smartphone-based electrochemical system was developed for the quantitation of chloramphenicol(CAP).The differential pulse voltammetric reduction of CAP was measured facilely on a piece of gold-deposited screen-printed electrode,which was docked onto a palm-sized detector with remote directives from a mobile APP of Bluetooth handshaking and digital display.Under optimal conditions,the target CAP could be determined in a range from 1 nmol/L to 5μmol/L with a detection limit of 0.25 nmol/L.Further tests on emulate samples demonstrated the miniaturized device could handle the food-screening scenarios with accuracy,convenience and quick response.
基金supported by Beijing University of Chemical Technology-China-Japan Friendship Hospital Biomedical Translation Engineering Research Center Joint Project(RZ2020-02)the National Key Research and Development Program of China(2016YFF0203703)
文摘Okadaic acid(OA),a small molecule substance derived from shellfish,is one of the most widely distributed marine toxins with acute symptoms of vomiting and diarrhea after accidental ingestion.For this,there is an urgently need for sensitive and reliable methods to detect OA in real shellfish samples.In this study,a simple aptasensor based on screen-printed carbon electrode(SPCE)with modification of chitosan(CS)and gold nanoparticles(Au NPs)was designed for electrochemical determination of OA,and the electrode surface was modified with Au NPs by potential-sweeping electrodeposition,which greatly improved the electrochemical response.The entire detection and characterization process were carried out by cyclic voltammetry(CV)with a linear correlation in the range of 0.01-100 ng/m L and a limit of detection(LOD)of 6.7 pg/m L.Furthermore,recovery rates of 92.3-116%were obtained demonstrating excellent accuracy through the recovery trial of mussel and scallop samples.
基金The financial support from the National Key Research and Development Program of China(No.2022YFE0201800)Shenzhen Science and Technology Innovation Commission(Nos.GJHZ20210705142200001 and JCYJ20210324140004013)Guangdong Natural Science Foundation(Nos.2021A1515220020 and 2020B1212060077)is gratefully acknowledged。
文摘Point-of-care testing(POCT)technology is highly desirable for clinical diagnosis,healthcare monitoring,food safety inspection,and environment surveillance,because it enables rapid detection anywhere,anytime,and by anyone.Electrochemiluminescence(ECL)has been widely used in chemo-/bio analysis due to its advantages such as high sensitivity,simplicity,rapidity and easy to control,and is now attracting increasing attention for POCT applications.However,to realize the accurate on-site quantitation,it is still challenging to develop portable devices which can precisely collect,analyze,transmit and display the ECL signals.This review will focus on how to develop a portable ECL device by summarizing recent examples and analyzing their key components part by part.Then the possible solutions to the existing challenges in the development and applications of portable ECL devices are summarized and discussed in detail,followed by offering future perspectives.We attempted to provide an appealing viewpoint to inspire interested researchers to comprehend and explore portable ECL sensing systems for practical applications and even commercialization.