Backscattering of gamma photons from a material is of fundamental importance in radiation shielding,industrial and medical applications, radiation dosimetry,and non-destructive testing. In Compton scattering, incident...Backscattering of gamma photons from a material is of fundamental importance in radiation shielding,industrial and medical applications, radiation dosimetry,and non-destructive testing. In Compton scattering, incident photons undergo multiple scatterings within the material(target) before exiting. Gamma photons continue to soften in energy as the number of scatterings increases in a thick target; in other words, the energy of gamma photons decreases as the scatterings increase in case of a thick target and results in the generation of singly and multiply scattered events. In this work, the energy distribution of backscattered gamma photons with backscattering intensity and energy probabilities were calculated by using the Monte Carlo method for metallic, biological, and shielding materials with various thicknesses of slab geometry. The materials under study were targeted with gamma photons of 0.279, 0.662, 1.250, and 2.100 Me V energies. In addition, the energy distributions of multiply scattered gamma photons were studied for materials with infinite geometry.The results are presented and discussed in detail by comparing with other Monte Carlo calculations.展开更多
A set of optimal proton optical potential parameters for pd-lS4w reactions are obtained at incident proton energy up to 250 MeV. Based on these parameters, the reaction cross-sections, elastic scattering angular distr...A set of optimal proton optical potential parameters for pd-lS4w reactions are obtained at incident proton energy up to 250 MeV. Based on these parameters, the reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross sections of proton-induced reactions on lS4w are calculated and analyzed by using theoretical models which integrate the optical model, distorted Born wave approximation theory, intra- nuclear cascade model, exciton model, Hauser-Feshbach theory and evaporation model. The calculated results are compared with existing experimental data and good agreement is achieved.展开更多
The atomic pair distribution function(PDF) reveals the interatomic distance in a material directly in real-space. It is a very powerful method to characterize the local structure of materials. With the help of the t...The atomic pair distribution function(PDF) reveals the interatomic distance in a material directly in real-space. It is a very powerful method to characterize the local structure of materials. With the help of the third generation synchrotron facility and spallation neutron source worldwide, the PDF method has developed quickly both experimentally and theoretically in recent years. Recently this method was successfully implemented at the Shanghai Synchrotron Radiation Facility(SSRF). The data quality is very high and this ensures the applicability of the method to study the subtle structural changes in complex materials. In this article, we introduce in detail this new method and show some experimental data we collected.展开更多
文摘Backscattering of gamma photons from a material is of fundamental importance in radiation shielding,industrial and medical applications, radiation dosimetry,and non-destructive testing. In Compton scattering, incident photons undergo multiple scatterings within the material(target) before exiting. Gamma photons continue to soften in energy as the number of scatterings increases in a thick target; in other words, the energy of gamma photons decreases as the scatterings increase in case of a thick target and results in the generation of singly and multiply scattered events. In this work, the energy distribution of backscattered gamma photons with backscattering intensity and energy probabilities were calculated by using the Monte Carlo method for metallic, biological, and shielding materials with various thicknesses of slab geometry. The materials under study were targeted with gamma photons of 0.279, 0.662, 1.250, and 2.100 Me V energies. In addition, the energy distributions of multiply scattered gamma photons were studied for materials with infinite geometry.The results are presented and discussed in detail by comparing with other Monte Carlo calculations.
基金Supported by National Basic Research Program of China,Technology Research of Accelerator Driven Sub-critical System for Nuclear Waste Transmutation(2007CB209903)Strategic Priority Research Program of Chinese Academy of Sciences,Thorium Molten Salt Reactor Nuclear Energy System(XDA02010100)
文摘A set of optimal proton optical potential parameters for pd-lS4w reactions are obtained at incident proton energy up to 250 MeV. Based on these parameters, the reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross sections of proton-induced reactions on lS4w are calculated and analyzed by using theoretical models which integrate the optical model, distorted Born wave approximation theory, intra- nuclear cascade model, exciton model, Hauser-Feshbach theory and evaporation model. The calculated results are compared with existing experimental data and good agreement is achieved.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1232112)the National Key Basic Research Program of China(Grant No.2012CB825700)
文摘The atomic pair distribution function(PDF) reveals the interatomic distance in a material directly in real-space. It is a very powerful method to characterize the local structure of materials. With the help of the third generation synchrotron facility and spallation neutron source worldwide, the PDF method has developed quickly both experimentally and theoretically in recent years. Recently this method was successfully implemented at the Shanghai Synchrotron Radiation Facility(SSRF). The data quality is very high and this ensures the applicability of the method to study the subtle structural changes in complex materials. In this article, we introduce in detail this new method and show some experimental data we collected.