The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the lin...The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the linkage mechanism.This paper proposes a new high-order non-circular gear train for an automatic scallion-seedling feeding mechanism.The proposed gear train has an asymmetrical transmission ratio;i.e.,its transmission ratio varies.This allows the mechanism’s execution component to move in a long displacement and rotate in a large rotation angle.The long displacement enables the execution component to reach the designed working position,and the large rotation angle allows it to feed a scallion in the required pose.A mathematical model for calculating the asymmetrical transmission ratio was established according to the closure requirements and the full-cycle motion of the driven gear pitch curve.Then,the parameter-design model of the new seedling-feeding mechanism was established,based on precise pose points and trajectory-shape control points.Moreover,an aided-design program was developed to obtain the parameter-solution domain of the scallion-seedling feeding mechanism.The mechanism parameters,which met the seedling-feeding function,were optimized to determine the transmission ratio,using a program and a kinematic simulation.Finally,a prototype of the mechanism was produced,and a seedling-feeding experiment was carried out.One-thousand seedlings were tested at a rate of 100 seedlings per minute,and the statistical success rate was 93.4%.Thus,the automatic scallion-seedling feeding mechanism significantly improves the e ciency of automatically transplanting scallions.展开更多
基金Supported by the National Key Research and Development Program of China(Grant No.2017YFD0700800)National Natural Science Foundation of China(Grant Nos.51775512,51975536)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ20E050003)Basic Public Welfare Technology Application Research Projects of Zhejiang Province(Grant Nos.LGN19E050002,LGN20E050006).
文摘The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the linkage mechanism.This paper proposes a new high-order non-circular gear train for an automatic scallion-seedling feeding mechanism.The proposed gear train has an asymmetrical transmission ratio;i.e.,its transmission ratio varies.This allows the mechanism’s execution component to move in a long displacement and rotate in a large rotation angle.The long displacement enables the execution component to reach the designed working position,and the large rotation angle allows it to feed a scallion in the required pose.A mathematical model for calculating the asymmetrical transmission ratio was established according to the closure requirements and the full-cycle motion of the driven gear pitch curve.Then,the parameter-design model of the new seedling-feeding mechanism was established,based on precise pose points and trajectory-shape control points.Moreover,an aided-design program was developed to obtain the parameter-solution domain of the scallion-seedling feeding mechanism.The mechanism parameters,which met the seedling-feeding function,were optimized to determine the transmission ratio,using a program and a kinematic simulation.Finally,a prototype of the mechanism was produced,and a seedling-feeding experiment was carried out.One-thousand seedlings were tested at a rate of 100 seedlings per minute,and the statistical success rate was 93.4%.Thus,the automatic scallion-seedling feeding mechanism significantly improves the e ciency of automatically transplanting scallions.