高分一号(GF-1)卫星是中国高分系列卫星的首发星,自2013年4月成功发射以来,在中国农业遥感业务工作中得到了广泛应用,已成为中国大宗农作物种植面积遥感监测的主要数据源。该文基于6S(second simulation of a satellite signal in the s...高分一号(GF-1)卫星是中国高分系列卫星的首发星,自2013年4月成功发射以来,在中国农业遥感业务工作中得到了广泛应用,已成为中国大宗农作物种植面积遥感监测的主要数据源。该文基于6S(second simulation of a satellite signal in the solar spectrum)辐射传输模型原理,设计并实现了适合于GF-1卫星数据大气校正算法与程序。算法以GF-1卫星1级数据、元数据及传感器公开参数为输入数据,不需要其他外源辅助数据,经过辐射定标,计算各波段平均太阳辐射值、表观反射率,通过选择大气模式,驱动6S模型获取表观反射率转换为地表反射率的参数,逐像元计算影像地表反射率。在算法研制的基础上,应用Fortran和IDL语言编写了大气校正批处理程序,实现了大气校正过程的批处理。该文采用2014年4月3日、6月28日、11月2日,以及2015年1月19日4个时相北京地区GF1卫星WFV(wide field view)数据,分别代表春夏秋冬4个季节,通过与ENVI软件的FLAASH(fast line-of-sight atmospheric analysis of spectral hypercubes)大气校正结果对比进行评估。2种方法 4个时相各波段全年相对偏差为3.26%,蓝光波段偏差最大为11.21%,其次是红、近红和绿光波段,分别为1.19%、0.73%和0.24%。作物覆盖区平均相对误差为12.99%,冬季最高为17.40%,秋季和春季分别为15.02%和14.15%,夏季相对差异最小为8.31%。各波段地表反射率的整体校正情况并未有太大差异,但6S校正后各波段反射率普遍比FLAASH校正结果略微偏高。2种校正结果计算的NDVI也基本一致,相对偏差0.64%;除水体外,绝对值差值的平均值均在0.0548以内。从计算效率来分析,6S模块实现了商用软件FLAASH模块中未提供的批量计算,在相同硬件环境下计算效率提高了75.0%以上。研究结果表明了该文开发的大气校正程序能够稳定批量处理GF-1卫星数据,可以作为农业遥感监测业务流程的组成部分。展开更多
In the ‘‘Internet Plus" era, space-based information services require effective and fast image satellite scheduling. Most existing studies consider image satellite scheduling to be an optimization problem to so...In the ‘‘Internet Plus" era, space-based information services require effective and fast image satellite scheduling. Most existing studies consider image satellite scheduling to be an optimization problem to solve with searching algorithms in a batch-wise manner. No real-time speed method for satellite scheduling exists. In this paper, with the idea of building a real-time speed method, satellite scheduling is remodeled based on a Dynamic and Stochastic Knapsack Problem(DSKP), and the objective is to maximize the total expected profit. No existing algorithm could be able to solve this novel scheduling problem properly. With inspiration from the recent achievements in Deep Reinforcement Learning(DRL) in video games, AlphaGo and dynamic controlling,a novel DRL-based method is applied to training a neural network to schedule tasks. The numerical results show that the method proposed in this paper can achieve relatively good performance with real-time speed and immediate respond style.展开更多
文摘高分一号(GF-1)卫星是中国高分系列卫星的首发星,自2013年4月成功发射以来,在中国农业遥感业务工作中得到了广泛应用,已成为中国大宗农作物种植面积遥感监测的主要数据源。该文基于6S(second simulation of a satellite signal in the solar spectrum)辐射传输模型原理,设计并实现了适合于GF-1卫星数据大气校正算法与程序。算法以GF-1卫星1级数据、元数据及传感器公开参数为输入数据,不需要其他外源辅助数据,经过辐射定标,计算各波段平均太阳辐射值、表观反射率,通过选择大气模式,驱动6S模型获取表观反射率转换为地表反射率的参数,逐像元计算影像地表反射率。在算法研制的基础上,应用Fortran和IDL语言编写了大气校正批处理程序,实现了大气校正过程的批处理。该文采用2014年4月3日、6月28日、11月2日,以及2015年1月19日4个时相北京地区GF1卫星WFV(wide field view)数据,分别代表春夏秋冬4个季节,通过与ENVI软件的FLAASH(fast line-of-sight atmospheric analysis of spectral hypercubes)大气校正结果对比进行评估。2种方法 4个时相各波段全年相对偏差为3.26%,蓝光波段偏差最大为11.21%,其次是红、近红和绿光波段,分别为1.19%、0.73%和0.24%。作物覆盖区平均相对误差为12.99%,冬季最高为17.40%,秋季和春季分别为15.02%和14.15%,夏季相对差异最小为8.31%。各波段地表反射率的整体校正情况并未有太大差异,但6S校正后各波段反射率普遍比FLAASH校正结果略微偏高。2种校正结果计算的NDVI也基本一致,相对偏差0.64%;除水体外,绝对值差值的平均值均在0.0548以内。从计算效率来分析,6S模块实现了商用软件FLAASH模块中未提供的批量计算,在相同硬件环境下计算效率提高了75.0%以上。研究结果表明了该文开发的大气校正程序能够稳定批量处理GF-1卫星数据,可以作为农业遥感监测业务流程的组成部分。
基金co-supported by the Key Programs of the Chinese Academy of Sciences (No. ZDRW-KT-2016-2)the National High-tech Research and Development Program of China (No. 2015AA7013040)
文摘In the ‘‘Internet Plus" era, space-based information services require effective and fast image satellite scheduling. Most existing studies consider image satellite scheduling to be an optimization problem to solve with searching algorithms in a batch-wise manner. No real-time speed method for satellite scheduling exists. In this paper, with the idea of building a real-time speed method, satellite scheduling is remodeled based on a Dynamic and Stochastic Knapsack Problem(DSKP), and the objective is to maximize the total expected profit. No existing algorithm could be able to solve this novel scheduling problem properly. With inspiration from the recent achievements in Deep Reinforcement Learning(DRL) in video games, AlphaGo and dynamic controlling,a novel DRL-based method is applied to training a neural network to schedule tasks. The numerical results show that the method proposed in this paper can achieve relatively good performance with real-time speed and immediate respond style.