In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean ...In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean to the west and the highly saline waters of the Saloum River to the north. In this estuarine and deltaic zone with its very low relief, the hydraulic loads in the water tables are generally close to zero or even negative, creating a reversal of the natural flow and encouraging saline intrusion into this system, which makes it very vulnerable. This study concerns the implementation of a numerical model of saline intrusion to provide a better understanding of the vulnerability of the water table by analyzing the variability of the freshwater/saltwater interface. The Modflow-2005 code is used to simulate saline intrusion using the SWI2 module, coupled with the GRASS (Geographic Resources Analysis Support System) software under the Linux operating system with the steep interface approach. The probable expansion of the wedge is studied in three scenarios, taking into account its position relative to the bedrock at 1 m, 5 m and 10 m. Simulations carried out under imposed potential and river conditions, based on variations in groundwater reserves using two effective porosity values, 10−1 and 10−2, show that the water table is highly vulnerable in the northwest sector. The probable expansion of the wedge increases as the storage coefficient decreases and is more marked with river conditions in the areas surrounding the Saloum River, reaching 6 km with a probability of 1. The probability of the wedge reaching a certain degree of expansion decreases from 1 to 0.5, and then cancels out as it moves inland. The probable position of the wedge is limited to 500 m or even 1 km depending on the corner around the coast to the southwest and in the southern zone. This modelling, carried out under natural conditions, will be developed further, taking into account climatic parameters and pumping from wells and borehol展开更多
A 3D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Oujiang River estuarine system in the East China Sea. The model was driven by the forcing of tidal elevations along ...A 3D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Oujiang River estuarine system in the East China Sea. The model was driven by the forcing of tidal elevations along the open boundaries and freshwater inflows from the Oujiang River. The bottom friction coefficient and vertical eddy viscosity were adjusted to complete model calibration and verification in simulations. It is demonstrated that the model is capable of reproducing observed temporal variability in the water surface elevation and longitudinal velocity, presenting skill coefficient higher than 0,82. This model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow conditions in the Oujiang River estuary. The model results reveal that the river channel presents a two-layer structure with flood currents near the bottom and ebb currents at the top layer in the region of seawater influenced on north shore under high river flow condition. The river discharge is a major factor affecting the salinity stratification in the estuarine system, The water exchange is mainly driven by the tidal forcing at the estuary mouth, except under high river flow conditions when the freshwater extends its influence from the river's head to its mouth.展开更多
Saline intrusion into sewage outfalls will greatly decrease the efficiency of the structures. The numerical model for this flow has been limited to one- and two-dimensional ones. In this article, a three-dimensional n...Saline intrusion into sewage outfalls will greatly decrease the efficiency of the structures. The numerical model for this flow has been limited to one- and two-dimensional ones. In this article, a three-dimensional numerical model for saline intrusion and purging in sewage outfalls was developed. The flow was modeled in three dimensions under turbulent conditions with the RNG k-ε turbulence model. The numerical results provided quantitative evidence of the fundamental flow mechanisms that took place during saline intrusion and purging. The comparisons of the results with that of two-dimensional model and that of experiments indicate that the three-dimensional numerical model developed in this article is more effective in predicting the internal flow in outfalls.展开更多
Saline intrusion into marine sewage ouffalls will greatly decrease the efficiency of sewage disposal. In order to investigate the mechanisms of this flow, in this paper, a three-dimensional numerical model based on F...Saline intrusion into marine sewage ouffalls will greatly decrease the efficiency of sewage disposal. In order to investigate the mechanisms of this flow, in this paper, a three-dimensional numerical model based on FVM (Finite Volume Method) is established, The RNG κ-ε model is selected for turbulence modeling. The time-averaged vohtme fraction equations are introduced to simulate the stratification and inteffaeial exchange of sewage and seawater in outfalls. Validity of the established three-dimensional numerical model is evaluated by comparisons of numerical results with experimental data. With this three-dimensional numerical model, the internal flow characteristics in ouffalls for different sewage discharges are simulated. The results indicate that for a low sewage discharge, saline circulates in the outfall due to intrusion and both the inflowing momentum and the inteffaeial turbulent mixing are important mechanisms to extrude the saline. For a high sewage discharge, saline intrusion could be avoided. The inflow momentum is the main mechanism to extrude the saline and the inteffacial turbulent mixing is nut important relatively. Even at a high sewage discharge, the saline wedge would be retained in the main ouffall pipe after the risers are purged. It takes a long time for this saline wedge to be extruded by interracial turbulent mixing.展开更多
文摘In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean to the west and the highly saline waters of the Saloum River to the north. In this estuarine and deltaic zone with its very low relief, the hydraulic loads in the water tables are generally close to zero or even negative, creating a reversal of the natural flow and encouraging saline intrusion into this system, which makes it very vulnerable. This study concerns the implementation of a numerical model of saline intrusion to provide a better understanding of the vulnerability of the water table by analyzing the variability of the freshwater/saltwater interface. The Modflow-2005 code is used to simulate saline intrusion using the SWI2 module, coupled with the GRASS (Geographic Resources Analysis Support System) software under the Linux operating system with the steep interface approach. The probable expansion of the wedge is studied in three scenarios, taking into account its position relative to the bedrock at 1 m, 5 m and 10 m. Simulations carried out under imposed potential and river conditions, based on variations in groundwater reserves using two effective porosity values, 10−1 and 10−2, show that the water table is highly vulnerable in the northwest sector. The probable expansion of the wedge increases as the storage coefficient decreases and is more marked with river conditions in the areas surrounding the Saloum River, reaching 6 km with a probability of 1. The probability of the wedge reaching a certain degree of expansion decreases from 1 to 0.5, and then cancels out as it moves inland. The probable position of the wedge is limited to 500 m or even 1 km depending on the corner around the coast to the southwest and in the southern zone. This modelling, carried out under natural conditions, will be developed further, taking into account climatic parameters and pumping from wells and borehol
基金financially supported by the National Natural Science Foundation of China(Grant No.50339010)the National Key Technology R & D Program of China(Grant No.2012BAB03B01)State water pollution control and management of Special Science and Technology Project(Grant No.2009zx07210-10)
文摘A 3D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Oujiang River estuarine system in the East China Sea. The model was driven by the forcing of tidal elevations along the open boundaries and freshwater inflows from the Oujiang River. The bottom friction coefficient and vertical eddy viscosity were adjusted to complete model calibration and verification in simulations. It is demonstrated that the model is capable of reproducing observed temporal variability in the water surface elevation and longitudinal velocity, presenting skill coefficient higher than 0,82. This model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow conditions in the Oujiang River estuary. The model results reveal that the river channel presents a two-layer structure with flood currents near the bottom and ebb currents at the top layer in the region of seawater influenced on north shore under high river flow condition. The river discharge is a major factor affecting the salinity stratification in the estuarine system, The water exchange is mainly driven by the tidal forcing at the estuary mouth, except under high river flow conditions when the freshwater extends its influence from the river's head to its mouth.
文摘Saline intrusion into sewage outfalls will greatly decrease the efficiency of the structures. The numerical model for this flow has been limited to one- and two-dimensional ones. In this article, a three-dimensional numerical model for saline intrusion and purging in sewage outfalls was developed. The flow was modeled in three dimensions under turbulent conditions with the RNG k-ε turbulence model. The numerical results provided quantitative evidence of the fundamental flow mechanisms that took place during saline intrusion and purging. The comparisons of the results with that of two-dimensional model and that of experiments indicate that the three-dimensional numerical model developed in this article is more effective in predicting the internal flow in outfalls.
文摘Saline intrusion into marine sewage ouffalls will greatly decrease the efficiency of sewage disposal. In order to investigate the mechanisms of this flow, in this paper, a three-dimensional numerical model based on FVM (Finite Volume Method) is established, The RNG κ-ε model is selected for turbulence modeling. The time-averaged vohtme fraction equations are introduced to simulate the stratification and inteffaeial exchange of sewage and seawater in outfalls. Validity of the established three-dimensional numerical model is evaluated by comparisons of numerical results with experimental data. With this three-dimensional numerical model, the internal flow characteristics in ouffalls for different sewage discharges are simulated. The results indicate that for a low sewage discharge, saline circulates in the outfall due to intrusion and both the inflowing momentum and the inteffaeial turbulent mixing are important mechanisms to extrude the saline. For a high sewage discharge, saline intrusion could be avoided. The inflow momentum is the main mechanism to extrude the saline and the inteffacial turbulent mixing is nut important relatively. Even at a high sewage discharge, the saline wedge would be retained in the main ouffall pipe after the risers are purged. It takes a long time for this saline wedge to be extruded by interracial turbulent mixing.