为得到清晰的0-1拓扑分布结构,在SIMP(solid isotropic microstructures withpenalization)和SRV(the sum of the reciprocal variables)方法的基础上提出了一种新的混合方法——SIMP-SRV方法,该方法将SIMP得到的优化结果用来初始化SRV...为得到清晰的0-1拓扑分布结构,在SIMP(solid isotropic microstructures withpenalization)和SRV(the sum of the reciprocal variables)方法的基础上提出了一种新的混合方法——SIMP-SRV方法,该方法将SIMP得到的优化结果用来初始化SRV方法的设计变量,再用SRV方法得到最终的优化目标。将SIMP-SRV方法应用于柔性机构的0-1拓扑优化设计中,得到了轮廓清晰的拓扑分布结构,完全消除了中间密度单元,从而证明了该方法的有效性。展开更多
介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penaliz...介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penalization)法相结合的更加规范的全新优化准则公式,并给出了相应的算例。计算结果表明,导重法不仅适用于传统的结构尺寸优化与形状优化,而且可很好地求解结构拓扑优化问题,并具有公式简单、通用性强、收敛速度快及优化效果好的优点。展开更多
随着多领域高端装备的快速升级与发展,迫切需要面向复杂服役工况的高性能热流承载结构优化设计。然而,缺乏热流耦合物理场的高效求解手段以及考虑复杂边界条件的热流承载结构设计能力不足仍是制约装备更新换代速度和质量的两大关键问题...随着多领域高端装备的快速升级与发展,迫切需要面向复杂服役工况的高性能热流承载结构优化设计。然而,缺乏热流耦合物理场的高效求解手段以及考虑复杂边界条件的热流承载结构设计能力不足仍是制约装备更新换代速度和质量的两大关键问题。因此,提出了一种新的无网格粒子方法——等几何粒子流体动力学方法(NURBS-based particle hydrodynamics,NBPH)。通过配置真伪粒子,基于非均匀有理B样条(Non-uniform rational B-splines,NURBS)基函数的插值构建粒子通讯,缓解了偏微分方程数值求解质量与分析域离散化程度之间的强耦合关系,提升了算法的计算效率。其次,将所提出的NBPH方法与固体各向同性材料惩罚(Solid isotropic material with penalization,SIMP)方法结合,搭建了一种新的无网格法拓扑优化框架——NBPH-topology Optimization,用于复杂热流场景的优化设计。根据体素分布构造了粒子流动阻力场,实现了流场与结构场的关联,通过求解连续伴随灵敏度,指导结构拓扑的连续演化。为了验证NBPH-TO框架的有效性和鲁棒性,研究了液冷和风冷两大典型散热场景,完成了优化设计与实验验证,结果表明该研究为复杂热流承载结构拓扑优化设计提供了可行的解决方案和有效的数值工具。展开更多
The design of compliant hinges has been extensively studied in the size and shape level in the literature.This paper presents a method for designing the single-axis flexure hinges in the topology level.Two kinds of hi...The design of compliant hinges has been extensively studied in the size and shape level in the literature.This paper presents a method for designing the single-axis flexure hinges in the topology level.Two kinds of hinges,that is,the translational hinge and the revolute hinge,are studied.The basic optimization models are developed for topology optimization of the translational hinge and the revolute hinge,respectively.The objective for topology optimization of flexure hinges is to maximize the compliance in the desired direction meanwhile minimizing the compliances in the other directions.The constraints for accomplishing the translational and revolute requirements are developed.The popular Solid Isotropic Material with Penalization method is used to find the optimal flexure hinge topology within a given design domain.Numerical results are performed to illustrate the validity of the proposed method.展开更多
文摘为得到清晰的0-1拓扑分布结构,在SIMP(solid isotropic microstructures withpenalization)和SRV(the sum of the reciprocal variables)方法的基础上提出了一种新的混合方法——SIMP-SRV方法,该方法将SIMP得到的优化结果用来初始化SRV方法的设计变量,再用SRV方法得到最终的优化目标。将SIMP-SRV方法应用于柔性机构的0-1拓扑优化设计中,得到了轮廓清晰的拓扑分布结构,完全消除了中间密度单元,从而证明了该方法的有效性。
文摘介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penalization)法相结合的更加规范的全新优化准则公式,并给出了相应的算例。计算结果表明,导重法不仅适用于传统的结构尺寸优化与形状优化,而且可很好地求解结构拓扑优化问题,并具有公式简单、通用性强、收敛速度快及优化效果好的优点。
文摘随着多领域高端装备的快速升级与发展,迫切需要面向复杂服役工况的高性能热流承载结构优化设计。然而,缺乏热流耦合物理场的高效求解手段以及考虑复杂边界条件的热流承载结构设计能力不足仍是制约装备更新换代速度和质量的两大关键问题。因此,提出了一种新的无网格粒子方法——等几何粒子流体动力学方法(NURBS-based particle hydrodynamics,NBPH)。通过配置真伪粒子,基于非均匀有理B样条(Non-uniform rational B-splines,NURBS)基函数的插值构建粒子通讯,缓解了偏微分方程数值求解质量与分析域离散化程度之间的强耦合关系,提升了算法的计算效率。其次,将所提出的NBPH方法与固体各向同性材料惩罚(Solid isotropic material with penalization,SIMP)方法结合,搭建了一种新的无网格法拓扑优化框架——NBPH-topology Optimization,用于复杂热流场景的优化设计。根据体素分布构造了粒子流动阻力场,实现了流场与结构场的关联,通过求解连续伴随灵敏度,指导结构拓扑的连续演化。为了验证NBPH-TO框架的有效性和鲁棒性,研究了液冷和风冷两大典型散热场景,完成了优化设计与实验验证,结果表明该研究为复杂热流承载结构拓扑优化设计提供了可行的解决方案和有效的数值工具。
基金supported by the National Natural Science Foundation of China(Grant No.91223201)the Natural Science Foundation of Guangdong Province(Grant No.S2013030013355),Project GDUPS(2010)the Fundamental Research Funds for the Central Universities(Grant No.2012ZP0004)
文摘The design of compliant hinges has been extensively studied in the size and shape level in the literature.This paper presents a method for designing the single-axis flexure hinges in the topology level.Two kinds of hinges,that is,the translational hinge and the revolute hinge,are studied.The basic optimization models are developed for topology optimization of the translational hinge and the revolute hinge,respectively.The objective for topology optimization of flexure hinges is to maximize the compliance in the desired direction meanwhile minimizing the compliances in the other directions.The constraints for accomplishing the translational and revolute requirements are developed.The popular Solid Isotropic Material with Penalization method is used to find the optimal flexure hinge topology within a given design domain.Numerical results are performed to illustrate the validity of the proposed method.