The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MSWD = 1.35) for the Kalatongke No. 1 and Huangshan- dong Cu-Ni-bearing mafic-ultramafic complexes. These ages a...The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MSWD = 1.35) for the Kalatongke No. 1 and Huangshan- dong Cu-Ni-bearing mafic-ultramafic complexes. These ages are much more precise than pre-existing rock-mineral Rb-Sr, Sm-Nd and Re-Os isochron ages for the two complexes and constrain the timing of not only the complexes but also the magmatic Cu-Ni sulfide deposits more reliably. It is neces- sary to carefully reevaluate the previous chronological data for the complexes. The Cu-Ni-bearing mafic-ultramafic com- plexes have the ages similar to those of postcollisional A-type granites in the same area, implying that they could be related to the delamination of lithospheric mantle and upwelling and partial melting of asthenospheric mantle in postcollisional setting. Therefore, the Cu-Ni-bearing mafic-ultramafic com- plexes are a direct indicator of vertical growth of the conti- nental crustal in the Central Asian Orogenic Belt.展开更多
Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdise giant magmatic belt, within which the Qüxü batholith is the most typical MME-bearing pluton. Systematic sampl...Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdise giant magmatic belt, within which the Qüxü batholith is the most typical MME-bearing pluton. Systematic sampling for granodioritic host rock, mafic microgranular enclaves and gabbro nearby at two locations in the Qüxü batholith, and subsequent zircon SHRIMP II U-Pb dating have been conducted. Two sets of isotopic ages for granodioritic host rock, mafic microgranular enclaves and gabbro are 50.4±1.3 Ma, 51.2±1.1 Ma, 47.0±l Ma and 49.3±1.7 Ma, 48.9±1.1 Ma, 49.9±1.7 Ma, respectively. It thus rules out the possibilities of mafic microgranular enclaves being refractory residues after partial melting of magma source region, or being xenoliths of country rocks or later intrusions.Therefore, it is believed that the three types of rocks mentioned above likely formed in the same magmatic event, i.e., they formed by magma mixing in the Eocene (c. 50 Ma). Compositionally, granitoid host rocks incline towards acidic end member involved in magma mixing, gabbros are akin to basic end member and mafic microgranular enclaves are the incompletely mixed basic magma clots trapped in acidic magma. The isotopic dating also suggested that huge-scale magma mixing in the Gangdise belt took place 15-20 million years after the initiation of the India-Asia continental collision, genetically related to the underplating of subduction-collision-induced basic magma at the base of the continental crust. Underplating and magma mixing were likely the main process of mass-energy exchange between the mantle and the crust during the continental collision, and greatly contributed to the accretion of the continental crust, the evolution of the lithosphere and related mineralization beneath the portion of the Tibetan Plateau to the north of the collision zone.展开更多
文摘The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MSWD = 1.35) for the Kalatongke No. 1 and Huangshan- dong Cu-Ni-bearing mafic-ultramafic complexes. These ages are much more precise than pre-existing rock-mineral Rb-Sr, Sm-Nd and Re-Os isochron ages for the two complexes and constrain the timing of not only the complexes but also the magmatic Cu-Ni sulfide deposits more reliably. It is neces- sary to carefully reevaluate the previous chronological data for the complexes. The Cu-Ni-bearing mafic-ultramafic com- plexes have the ages similar to those of postcollisional A-type granites in the same area, implying that they could be related to the delamination of lithospheric mantle and upwelling and partial melting of asthenospheric mantle in postcollisional setting. Therefore, the Cu-Ni-bearing mafic-ultramafic com- plexes are a direct indicator of vertical growth of the conti- nental crustal in the Central Asian Orogenic Belt.
基金the grants of the National Key Project for Basic Research of China(No.2002CB412600)the National Natural Science Foundation of China(Nos.40172025,40103003,49802005,49772107,40473020)the key project on the Tibetan Plateau of the Ministryof Land and Resources of China(No.20010102401).
文摘Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdise giant magmatic belt, within which the Qüxü batholith is the most typical MME-bearing pluton. Systematic sampling for granodioritic host rock, mafic microgranular enclaves and gabbro nearby at two locations in the Qüxü batholith, and subsequent zircon SHRIMP II U-Pb dating have been conducted. Two sets of isotopic ages for granodioritic host rock, mafic microgranular enclaves and gabbro are 50.4±1.3 Ma, 51.2±1.1 Ma, 47.0±l Ma and 49.3±1.7 Ma, 48.9±1.1 Ma, 49.9±1.7 Ma, respectively. It thus rules out the possibilities of mafic microgranular enclaves being refractory residues after partial melting of magma source region, or being xenoliths of country rocks or later intrusions.Therefore, it is believed that the three types of rocks mentioned above likely formed in the same magmatic event, i.e., they formed by magma mixing in the Eocene (c. 50 Ma). Compositionally, granitoid host rocks incline towards acidic end member involved in magma mixing, gabbros are akin to basic end member and mafic microgranular enclaves are the incompletely mixed basic magma clots trapped in acidic magma. The isotopic dating also suggested that huge-scale magma mixing in the Gangdise belt took place 15-20 million years after the initiation of the India-Asia continental collision, genetically related to the underplating of subduction-collision-induced basic magma at the base of the continental crust. Underplating and magma mixing were likely the main process of mass-energy exchange between the mantle and the crust during the continental collision, and greatly contributed to the accretion of the continental crust, the evolution of the lithosphere and related mineralization beneath the portion of the Tibetan Plateau to the north of the collision zone.