超导故障限流器(Superconducting Fault Current Limiter,SFCL)是利用超导体的基本特性,有效限制电力系统故障短路电流,提高电网安全性和稳定性的一种新型电力设备。文中在综合大量文献的基础上,对超导故障限流器进行了一种较为系统的...超导故障限流器(Superconducting Fault Current Limiter,SFCL)是利用超导体的基本特性,有效限制电力系统故障短路电流,提高电网安全性和稳定性的一种新型电力设备。文中在综合大量文献的基础上,对超导故障限流器进行了一种较为系统的分类。基于该种分类,结合目前国内外的研究现状,就电阻型、磁屏蔽型、饱和铁芯电抗器型、桥路型SFCL的工作原理作了详细的分析介绍,还给出了它们在电力系统中的安装位置。最后,对超导故障限流器的研究中存在的问题及其发展趋势做了说明。展开更多
The transient stability of a single machine to infinite-busbar power system with resistortype superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is ...The transient stability of a single machine to infinite-busbar power system with resistortype superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is considered to introduce a resistance into the three-phase circuits when faults occur. Based on the power-angle curves for different short-circuit conditions of the single-line to ground, double-line to ground and line to line short-circuit faults, the influences of the SFCLs on transient stability are analyzed in detail. The time-domain simulation of transient stability is carried out to verify the analytical results.展开更多
Protection of radial distribution networks is widely based on coordinated inverse time overcurrent relays (OCRs) ensuring both effectiveness and selectivity. However, the integration of distributed generation (DG) int...Protection of radial distribution networks is widely based on coordinated inverse time overcurrent relays (OCRs) ensuring both effectiveness and selectivity. However, the integration of distributed generation (DG) into an existing distribution network not only inevitably increases fault current levels to levels that may exceed the OCR ratings, but it may also disturb the original overcurrent relay coordination adversely effecting protection selectivity. To analyze the potentially adverse impact of DG on distribution system protective devices with respect to circuit breaker ratings and OCR coordination fault current studies are carried out for common reference test system under the influence of additional DG. The possible advantages of Superconducting Fault Current Limiter (SFCL) as a means to limit the adverse effect of DG on distribution system protection and their effectiveness will be demonstrated. Furthermore, minimum SFCL impedances required to avoid miss-operation of the primary and back-up OCRs are determined. The theoretical analysis will be validated using the IEEE 13-bus distribution test system is used. Both theoretical and simulation results indicate that the proposed application of SFCL is a viable option to effectively mitigate the DG impact on protective devices, thus enhancing the reliability of distribution network interfaced with DG.展开更多
文摘超导故障限流器(Superconducting Fault Current Limiter,SFCL)是利用超导体的基本特性,有效限制电力系统故障短路电流,提高电网安全性和稳定性的一种新型电力设备。文中在综合大量文献的基础上,对超导故障限流器进行了一种较为系统的分类。基于该种分类,结合目前国内外的研究现状,就电阻型、磁屏蔽型、饱和铁芯电抗器型、桥路型SFCL的工作原理作了详细的分析介绍,还给出了它们在电力系统中的安装位置。最后,对超导故障限流器的研究中存在的问题及其发展趋势做了说明。
文摘The transient stability of a single machine to infinite-busbar power system with resistortype superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is considered to introduce a resistance into the three-phase circuits when faults occur. Based on the power-angle curves for different short-circuit conditions of the single-line to ground, double-line to ground and line to line short-circuit faults, the influences of the SFCLs on transient stability are analyzed in detail. The time-domain simulation of transient stability is carried out to verify the analytical results.
文摘Protection of radial distribution networks is widely based on coordinated inverse time overcurrent relays (OCRs) ensuring both effectiveness and selectivity. However, the integration of distributed generation (DG) into an existing distribution network not only inevitably increases fault current levels to levels that may exceed the OCR ratings, but it may also disturb the original overcurrent relay coordination adversely effecting protection selectivity. To analyze the potentially adverse impact of DG on distribution system protective devices with respect to circuit breaker ratings and OCR coordination fault current studies are carried out for common reference test system under the influence of additional DG. The possible advantages of Superconducting Fault Current Limiter (SFCL) as a means to limit the adverse effect of DG on distribution system protection and their effectiveness will be demonstrated. Furthermore, minimum SFCL impedances required to avoid miss-operation of the primary and back-up OCRs are determined. The theoretical analysis will be validated using the IEEE 13-bus distribution test system is used. Both theoretical and simulation results indicate that the proposed application of SFCL is a viable option to effectively mitigate the DG impact on protective devices, thus enhancing the reliability of distribution network interfaced with DG.