Maximum Power Point Tracking(MPPT)is crucial for maximizing the energy output of photovoltaic(PV)systems by continuously adjusting the operating point of the panels to track the point of maximum power production under...Maximum Power Point Tracking(MPPT)is crucial for maximizing the energy output of photovoltaic(PV)systems by continuously adjusting the operating point of the panels to track the point of maximum power production under changing environmental conditions.This work proposes the design of an MPPT system for solar PV installations using the Differential Grey Wolf Optimizer(DGWO).It dynamically adjusts the parameters of the MPPT controller,specifically the duty cycle of the SEPIC converter,to efficiently track the Maximum Power Point(MPP).The proposed system aims to enhance the energy harvesting capability of solar PV systems by optimizing their performance under varying solar irradiance,temperature and shading conditions.Simulation results demonstrate the effectiveness of the DGWO-based MPPT system in maximizing the power output of solar PV installations compared to conventional MPPT methods.This research contributes to the development of advanced MPPT techniques for improving the efficiency and reliability of solar energy systems.展开更多
In this paper we report a kind of fast-scale instability occurring in the single-ended primary inductance converter (SEPIC) power factor pre-regulator, which is designed to operate in discontinuous conduction mode. ...In this paper we report a kind of fast-scale instability occurring in the single-ended primary inductance converter (SEPIC) power factor pre-regulator, which is designed to operate in discontinuous conduction mode. Main results are given by exact cycle-by-cycle computer simulations as well as theoretical analysis. It is found that the instability phenomenon manifests itself as a fast-scale bifurcation at the switching period, which implies the occurrence of border collision bifurcation, or is related to the transition of the regular operating mode of the SEPIC. According to the theoretical analysis and simulation results, the effects of parameters on system stability, and the locations of the bifurcation points are confirmed. Moreover, the effects of such an instability on power factor and switching stress are also discussed. Finally, the occurrence of the asymmetric bifurcation locations is investigated. The results show that this work provides a convenient means of predicting stability boundaries which can facilitate the selection of the practical parameters.展开更多
A family of coat circuits for SEPIC converters to improve their boost capability is presented.The present coat circuit does not contain any active switches,so the voltage conversion ratio of the presented converters c...A family of coat circuits for SEPIC converters to improve their boost capability is presented.The present coat circuit does not contain any active switches,so the voltage conversion ratio of the presented converters can be enhanced without complicating its gate driver and control circuits.Meanwhile,because of the expansibility of the coat circuit,the number of its basic cells can be adjusted regarding the actual application requirements.Moreover,in comparison with a conventional SEPIC converter,voltage stress on power switch and diodes of the presented topology is lower at the same output voltage,and thus semiconductor components with low on-resistance are chosen to improve conversion efficiency of converter.The operational principle and steady state analysis of the SEPIC converter with one of the proposed coat circuits have been discussed in detail,and a 300W laboratory prototype is implemented to prove the theoretical analysis of presented converter.展开更多
The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated fr...The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed.展开更多
The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Stead...The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Steady state and small signal analysis was carried out on the converter dynamic equations using the method of Harmonic balance Technique. The steady state variables and their respective ripple quantities obtained were plotted against duty ratio D. The results obtained for a supply input voltage of 60 volts to the converter at a duty ratio of D = 0.8 , compares well with simulation results.展开更多
文摘Maximum Power Point Tracking(MPPT)is crucial for maximizing the energy output of photovoltaic(PV)systems by continuously adjusting the operating point of the panels to track the point of maximum power production under changing environmental conditions.This work proposes the design of an MPPT system for solar PV installations using the Differential Grey Wolf Optimizer(DGWO).It dynamically adjusts the parameters of the MPPT controller,specifically the duty cycle of the SEPIC converter,to efficiently track the Maximum Power Point(MPP).The proposed system aims to enhance the energy harvesting capability of solar PV systems by optimizing their performance under varying solar irradiance,temperature and shading conditions.Simulation results demonstrate the effectiveness of the DGWO-based MPPT system in maximizing the power output of solar PV installations compared to conventional MPPT methods.This research contributes to the development of advanced MPPT techniques for improving the efficiency and reliability of solar energy systems.
文摘In this paper we report a kind of fast-scale instability occurring in the single-ended primary inductance converter (SEPIC) power factor pre-regulator, which is designed to operate in discontinuous conduction mode. Main results are given by exact cycle-by-cycle computer simulations as well as theoretical analysis. It is found that the instability phenomenon manifests itself as a fast-scale bifurcation at the switching period, which implies the occurrence of border collision bifurcation, or is related to the transition of the regular operating mode of the SEPIC. According to the theoretical analysis and simulation results, the effects of parameters on system stability, and the locations of the bifurcation points are confirmed. Moreover, the effects of such an instability on power factor and switching stress are also discussed. Finally, the occurrence of the asymmetric bifurcation locations is investigated. The results show that this work provides a convenient means of predicting stability boundaries which can facilitate the selection of the practical parameters.
基金supported in part by the National Natural Science Foundation of China(51707103)in part by Guangxi Key Research and Development Program(2022AB05028).
文摘A family of coat circuits for SEPIC converters to improve their boost capability is presented.The present coat circuit does not contain any active switches,so the voltage conversion ratio of the presented converters can be enhanced without complicating its gate driver and control circuits.Meanwhile,because of the expansibility of the coat circuit,the number of its basic cells can be adjusted regarding the actual application requirements.Moreover,in comparison with a conventional SEPIC converter,voltage stress on power switch and diodes of the presented topology is lower at the same output voltage,and thus semiconductor components with low on-resistance are chosen to improve conversion efficiency of converter.The operational principle and steady state analysis of the SEPIC converter with one of the proposed coat circuits have been discussed in detail,and a 300W laboratory prototype is implemented to prove the theoretical analysis of presented converter.
文摘The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed.
文摘The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Steady state and small signal analysis was carried out on the converter dynamic equations using the method of Harmonic balance Technique. The steady state variables and their respective ripple quantities obtained were plotted against duty ratio D. The results obtained for a supply input voltage of 60 volts to the converter at a duty ratio of D = 0.8 , compares well with simulation results.