Most ore-forming characteristics of the Langshan-Zha'ertaishan hydrothermal exhalation belt, which consists of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan large-superlarge Zn-Pb-Cu-Fe sulfide deposits, a...Most ore-forming characteristics of the Langshan-Zha'ertaishan hydrothermal exhalation belt, which consists of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan large-superlarge Zn-Pb-Cu-Fe sulfide deposits, are most similar to those of Mesoproterozoic SEDEX-type provinces of the world. The characteristics include: (1) All deposits of this type in the belt occur in third-order fault-basins in the Langshan-Zha'ertaishan aulacogen along the northern margin of the North China Platform; (2) these deposits with all their orebodies hosted in the Mesoproterozoic impure dolomite-marble and carbonaceous phyllite (or schists) have an apparent stratabound nature; ores display laminated and banded structures, showing clear depositional features; (3) there is some evidence of syn-sedimentary faulting, which to a certain extent accounts for the temporal and spatial distribution and the size of the orebodies in all deposits and the formation of intrabed conglomerates and breccias; (4) they show lateral and vertical zonation of sulfides; (5) The Cu/(Pb+Zn+Cu) ratio of the large and thick Pb+Zn+Cu orebodies gradually decreases from bottom to top; and (6) barite is interbedded with pyrites and sometimes with sphalerite. However, some characteristics such as the Co/Ni radio of the pyrites, the volcanism, for example, of the Langshan-Zha'ertaishan metallogenic belt, are different from those of the typical SEDEX deposits of the world. The meta-basic volcanic rock in Huogeqi, the sodic bimodal volcanic rocks in the Dongshengmiao and potassic bimodal-volcanic rocks with blastoporphyritic and blasto-glomeroporphyritic texture as well as blasto-amygdaloidal structure in the Tanyaokou deposits have been discovered in the only ore-bearing second formation of the Langshan Group in the past 10 years. The metallogeny of some deposits hosted in the Langshan Group is closely related to syn-sedimentary volcanism based on the following facts: most of the lead isotopes in sphalerite, galena, pyrite, pyrrhotite and chalcopyrite plot on both sid展开更多
The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-typ...The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the j13CpDB ranges from -2.01 to 3.34 (%0) whereas the JISOsMow ranges from 6.96 to 18.95 (%0). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181~C, with salinity values of 1.06 to 8.04 wt% NaCI eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42- (F-, CI--H20 system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.展开更多
Suspended particulate matter (SPM) collected in the Changjiang (Yangtze River) estuary in June 2006 was separated into five fractions via water elutriation: clay-very fme silt (〈8 μm), fine silt (8-16 μm),...Suspended particulate matter (SPM) collected in the Changjiang (Yangtze River) estuary in June 2006 was separated into five fractions via water elutriation: clay-very fme silt (〈8 μm), fine silt (8-16 μm), medium silt (16--32 μm), coarse silt (32~53 μm) and sand (〉63 μm). The SPM and fractionated particles were sequentially analyzed by a modified SEDEX sequential extraction method to obtain six species of phosphorus: exchangeable or loosely-sorbed P, organic P, Fe-bound P, authigenic P, detrital P and refractory P. The results indicated that all particulate phosphorus species except for detrital P were negatively correlated to particle size; a high detrital P content was found in coarse silt and very coarse silt. From the inside of the river mouth to the gate of the fiver mouth, organic P, Fe-bound P and refractory P in the suspended particles decreased and a higher amount of exchangeable P appeared around the gate of the fiver mouth. From the gate of the river mouth to the sea, exchangeable P and organic P in suspended panicles increased distinctly. The total particulate P flux into the estuary from the Changjiang River was about 45.45×10^8μmol/s during sampling. Of this, about 8.27×10^8μmol/s was associated with the "truly suspended" fraction. The bio-available particulate P flux was about 13.58×10^8μmol/s. Of this, about 4.24 ×10^8μmol/s w as transported by "truly suspended" particles.展开更多
基金the National Natural Science Foundation of China(Grant No.40172040) the Key Project of the National Natural Science Foundation of China(Grant No.40234051) the support of the Major State Basic Research Program of China(Grant No.G1999043215).
文摘Most ore-forming characteristics of the Langshan-Zha'ertaishan hydrothermal exhalation belt, which consists of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan large-superlarge Zn-Pb-Cu-Fe sulfide deposits, are most similar to those of Mesoproterozoic SEDEX-type provinces of the world. The characteristics include: (1) All deposits of this type in the belt occur in third-order fault-basins in the Langshan-Zha'ertaishan aulacogen along the northern margin of the North China Platform; (2) these deposits with all their orebodies hosted in the Mesoproterozoic impure dolomite-marble and carbonaceous phyllite (or schists) have an apparent stratabound nature; ores display laminated and banded structures, showing clear depositional features; (3) there is some evidence of syn-sedimentary faulting, which to a certain extent accounts for the temporal and spatial distribution and the size of the orebodies in all deposits and the formation of intrabed conglomerates and breccias; (4) they show lateral and vertical zonation of sulfides; (5) The Cu/(Pb+Zn+Cu) ratio of the large and thick Pb+Zn+Cu orebodies gradually decreases from bottom to top; and (6) barite is interbedded with pyrites and sometimes with sphalerite. However, some characteristics such as the Co/Ni radio of the pyrites, the volcanism, for example, of the Langshan-Zha'ertaishan metallogenic belt, are different from those of the typical SEDEX deposits of the world. The meta-basic volcanic rock in Huogeqi, the sodic bimodal volcanic rocks in the Dongshengmiao and potassic bimodal-volcanic rocks with blastoporphyritic and blasto-glomeroporphyritic texture as well as blasto-amygdaloidal structure in the Tanyaokou deposits have been discovered in the only ore-bearing second formation of the Langshan Group in the past 10 years. The metallogeny of some deposits hosted in the Langshan Group is closely related to syn-sedimentary volcanism based on the following facts: most of the lead isotopes in sphalerite, galena, pyrite, pyrrhotite and chalcopyrite plot on both sid
基金supported by the China Schorlarship Council (CSC)the Global Center of Excellence (GCOE) in Novel Carbon Resource Sciences, Kyushu Universitysupported by the Zhaokalong Mine, Qinghai, China
文摘The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the j13CpDB ranges from -2.01 to 3.34 (%0) whereas the JISOsMow ranges from 6.96 to 18.95 (%0). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181~C, with salinity values of 1.06 to 8.04 wt% NaCI eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42- (F-, CI--H20 system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.
基金Supported by the National Natural Science Foundation of China (Nos.40976044,40920164004 and 30490232)the National Basic Research Program of China (973 Program) (Nos.2002CB12405 and 2005CB422305)
文摘Suspended particulate matter (SPM) collected in the Changjiang (Yangtze River) estuary in June 2006 was separated into five fractions via water elutriation: clay-very fme silt (〈8 μm), fine silt (8-16 μm), medium silt (16--32 μm), coarse silt (32~53 μm) and sand (〉63 μm). The SPM and fractionated particles were sequentially analyzed by a modified SEDEX sequential extraction method to obtain six species of phosphorus: exchangeable or loosely-sorbed P, organic P, Fe-bound P, authigenic P, detrital P and refractory P. The results indicated that all particulate phosphorus species except for detrital P were negatively correlated to particle size; a high detrital P content was found in coarse silt and very coarse silt. From the inside of the river mouth to the gate of the fiver mouth, organic P, Fe-bound P and refractory P in the suspended particles decreased and a higher amount of exchangeable P appeared around the gate of the fiver mouth. From the gate of the river mouth to the sea, exchangeable P and organic P in suspended panicles increased distinctly. The total particulate P flux into the estuary from the Changjiang River was about 45.45×10^8μmol/s during sampling. Of this, about 8.27×10^8μmol/s was associated with the "truly suspended" fraction. The bio-available particulate P flux was about 13.58×10^8μmol/s. Of this, about 4.24 ×10^8μmol/s w as transported by "truly suspended" particles.