Glaucoma is the leading cause of irreversible blindness worldwide. The reconstruction of aqueous outflow drainage (RAOD) has recently been proposed to aid in restoring aqueous outflow drainage in primary open-angle gl...Glaucoma is the leading cause of irreversible blindness worldwide. The reconstruction of aqueous outflow drainage (RAOD) has recently been proposed to aid in restoring aqueous outflow drainage in primary open-angle glaucoma. However, the mechanism of RAOD remains to be fully understood. Based on literature review and research studies, the potential mechanisms of RAOD are the following: (i) Circumferential dilation of the Schlemm’s canal (SC) and surrounding collector channels. (ii) Instant formation of microcracks through RAOD procedures. (iii) Formation of more pores, and local detachment between the SC endothelium (SCE) and basement membrane. (iv) Activation of stem cells by constant mechanical stress caused by the tensional suture placed at the anterior part of the SC. (v) Reversal of trabecular meshwork (TM) herniation. (vi) Mobilization of the reserve of the aqueous drainage. (vii) Change of SCE phenotype. (viii) Mechanosensing and mechanotransducing of TM.展开更多
基金supported by Beijing Scholar Program and Capital Clinical Characteristics Research Project (Z161100000516081)
文摘Glaucoma is the leading cause of irreversible blindness worldwide. The reconstruction of aqueous outflow drainage (RAOD) has recently been proposed to aid in restoring aqueous outflow drainage in primary open-angle glaucoma. However, the mechanism of RAOD remains to be fully understood. Based on literature review and research studies, the potential mechanisms of RAOD are the following: (i) Circumferential dilation of the Schlemm’s canal (SC) and surrounding collector channels. (ii) Instant formation of microcracks through RAOD procedures. (iii) Formation of more pores, and local detachment between the SC endothelium (SCE) and basement membrane. (iv) Activation of stem cells by constant mechanical stress caused by the tensional suture placed at the anterior part of the SC. (v) Reversal of trabecular meshwork (TM) herniation. (vi) Mobilization of the reserve of the aqueous drainage. (vii) Change of SCE phenotype. (viii) Mechanosensing and mechanotransducing of TM.