期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进模糊C均值算法的电力负荷特性分类 被引量:35
1
作者 周开乐 杨善林 《电力系统保护与控制》 EI CSCD 北大核心 2012年第22期58-63,共6页
为了提高负荷分类的精确性和有效性,提出了将基于模拟退火遗传算法的模糊C均值(Simulated Annealing Genetic Algorithm Based Fuzzy C-Means,SAGA-FCM)算法用于电力系统负荷特性分类。SAGA-FCM算法以模糊C均值(Fuzzy C-Means,FCM)算法... 为了提高负荷分类的精确性和有效性,提出了将基于模拟退火遗传算法的模糊C均值(Simulated Annealing Genetic Algorithm Based Fuzzy C-Means,SAGA-FCM)算法用于电力系统负荷特性分类。SAGA-FCM算法以模糊C均值(Fuzzy C-Means,FCM)算法为基础,融合了模拟退火算法较强的局部搜索能力和遗传算法较强的全局搜索能力,克服了传统FCM算法对初始聚类中心敏感和容易陷入局部最优的问题。将其与系统聚类法、K均值(K-Means)算法和传统FCM算法分别用于电力系统负荷特性分类实验,对比分析表明了SAGA-FCM算法用于负荷特性分类的有效性和优越性。 展开更多
关键词 负荷分类 saga-fcm算法 模糊C均值算法 聚类
下载PDF
基于SAGA-FCM算法的非侵入式负荷监测方法 被引量:6
2
作者 刘炜 谭兴 +1 位作者 周克 马嘉伟 《现代电子技术》 北大核心 2019年第23期72-76,共5页
针对现有的非侵入式负荷监测(NILM)方法对小功率设备识别准确率不够,以及监测数据量过大时,准确率下降严重等问题,提出一种新颖的非侵入负荷监测方法。该方法以模糊C均值聚类算法(FCM)为基础,采用差量特征提取法提取任意时刻的特征变化... 针对现有的非侵入式负荷监测(NILM)方法对小功率设备识别准确率不够,以及监测数据量过大时,准确率下降严重等问题,提出一种新颖的非侵入负荷监测方法。该方法以模糊C均值聚类算法(FCM)为基础,采用差量特征提取法提取任意时刻的特征变化值,引入模拟退火算法(SA)和遗传算法(GA)对聚类过程进行优化,实现了多类型电器负荷的聚类识别。实验数据表明,随着监测数据量的增加,该方法最终目标函数始终小且稳定,具有较好的稳定性和可靠性,适用于NILM大数据监测环境,采用谐波特征后识别准确率有一定的提升。 展开更多
关键词 监测方法 非侵入负荷监测 差量特征提取 聚类过程优化 saga-fcm算法 聚类识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部