叶面积指数Leaf Area Index(LAI)是表征植被冠层结构的一个重要参数,因大气条件等因素影响,使MODIS LAI数据产品中存在数据缺失、质量较低等问题,严重影响LAI数据集的应用。以江西省为研究区,综合利用像元质量分析、S-G滤波和年序列异...叶面积指数Leaf Area Index(LAI)是表征植被冠层结构的一个重要参数,因大气条件等因素影响,使MODIS LAI数据产品中存在数据缺失、质量较低等问题,严重影响LAI数据集的应用。以江西省为研究区,综合利用像元质量分析、S-G滤波和年序列异常值检测滤波技术对2009~2013年MODIS LAI时序产品数据集进行重建研究。结果表明:阔叶林高质量像元占比最低,仅为51.76%,各类别低质量与反演失败像元整体占比达到20%~30%。针对数据集质量偏低的问题,提出了综合滤波方法。相较于S-G滤波法,重建后的高质量像元的LAI均值与原始均值更趋一致,中高质量像元重建后与原始数据的相关系数达到0.97,具有更好的保真性。对中低质量像元重建的异常值进行了滤波,填充了空值区,降低了标准偏差,较好地识别和修复了低值区或异常点,整体稳定性更好,能有效地拟合时序变化曲线。展开更多
Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l...Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The展开更多
文摘叶面积指数Leaf Area Index(LAI)是表征植被冠层结构的一个重要参数,因大气条件等因素影响,使MODIS LAI数据产品中存在数据缺失、质量较低等问题,严重影响LAI数据集的应用。以江西省为研究区,综合利用像元质量分析、S-G滤波和年序列异常值检测滤波技术对2009~2013年MODIS LAI时序产品数据集进行重建研究。结果表明:阔叶林高质量像元占比最低,仅为51.76%,各类别低质量与反演失败像元整体占比达到20%~30%。针对数据集质量偏低的问题,提出了综合滤波方法。相较于S-G滤波法,重建后的高质量像元的LAI均值与原始均值更趋一致,中高质量像元重建后与原始数据的相关系数达到0.97,具有更好的保真性。对中低质量像元重建的异常值进行了滤波,填充了空值区,降低了标准偏差,较好地识别和修复了低值区或异常点,整体稳定性更好,能有效地拟合时序变化曲线。
基金funding by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors(PRINCE project).
文摘Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The