Planting a fast-growing multipurpose Acacia decurrens (AD) tree is one of the climate-smart agricultural practices that have been promoted in Ethiopia, which is widely practiced and an important livelihood strategy in...Planting a fast-growing multipurpose Acacia decurrens (AD) tree is one of the climate-smart agricultural practices that have been promoted in Ethiopia, which is widely practiced and an important livelihood strategy in Awi zone. However, the extent of its adoption varies considerably among households in the study area. This study investigated the determinants of intensity of adoption of AD among 385 randomly selected rural households in Awi Zone. Data were gathered using a cross-sectional household survey. Descriptive statistics and Two-limit Tobit model were employed for data analysis. The result of the study shows that on average the intensity of adoption of AD was 0.43 (43% of the total cropland area), though majority of the farmers (48.8%) belong to low level of adoption. The result of the analysis shows that being male, educational level, access to seedling, experience in growing the tree, extension contact has positive and significant relationship with the intensity of adoption. Age of head of household, land holding size, livestock holding size, soil fertility status, disease emergence and road distance have negative and significant influence on intensity of adoption. These suggest that expanding road infrastructure, education, access to seedling, secure land property right, disease management, and provision of extension services related to the AD can also improve smallholder farmers’ intensity of AD adoption. The generated information provides a picture of the study area’s situation to the attention of policy makers, development practitioners and institutional service providers to formulate a better policy intervention to sustain smallholder farmers’ AD plantation.展开更多
Background:Evaluating the impacts of land-use/land-cover(LULC)changes on ecosystem service values(ESVs)is essential for sustainable use and management of ecosystems.In this study,we evaluated the impact of human activ...Background:Evaluating the impacts of land-use/land-cover(LULC)changes on ecosystem service values(ESVs)is essential for sustainable use and management of ecosystems.In this study,we evaluated the impact of human activity driven LULC changes on ESVs over the period 1982–2016/17 in contrasting agro-ecological environments:Guder(highland),Aba Gerima(midland),and Debatie(lowland)watersheds of the Upper Blue Nile basin,Ethiopia.Results:During the study period,the continuous expansion of cultivated land at the expense of natural vegetation(bushland,forest,and grazing land)severely reduced the total ESV by about US$58 thousand(35%)in Aba Gerima and US$31 thousand(29%)in Debatie watersheds.In contrast,the unprecedented expansion of plantations,mainly through the planting of Acacia decurrens,led,from 2006,to a ESV rebound by about US$71 thousand(54%)in Guder watershed,after it had decreased by about US$61 thousand(32%)between 1982 and 2006.The reduction in natural forest area was the major contributor to the loss of total ESV in the study watersheds,ranging from US$31 thousand(63%)in Debatie to US$96.9 thousand(70%)in Guder between 1982 and 2016/17.On an areaspecific basis,LULC changes reduced the average ESV from US$560 ha^(−1) year^(−1)(1982)in Guder to US$306 ha^(−1) year^(−1)(2017)in Debatie watersheds.Specific ESVs such as provisioning(mainly as food production)and regulating services(mainly as erosion control and climate regulation)accounted for most of the total ESVs estimated for the study watersheds.Conclusions:In most cases,the total and specific ESVs of the watersheds were negatively associated with the population growth,which in turn was positively associated with the expansion of cultivated land over the study period.In Guder,however,ESVs were positively associated with population growth,especially after 2012.This is mainly due to the expansion of Acacia decurrens plantations.Our results suggest,therefore,that future policy measures and directions should focus on improving vegetation cover through p展开更多
[Objectives]This study was conducted to analyze the genetic toxicity of Solidago decurrens,with a view to scientifically and safely using S.decurrens.[Methods]Using commercially available S.decurrens as an experimenta...[Objectives]This study was conducted to analyze the genetic toxicity of Solidago decurrens,with a view to scientifically and safely using S.decurrens.[Methods]Using commercially available S.decurrens as an experimental material,according to Vicia faba root tip micronucleus technique,V.faba root tips were treated with different doses of aqueous extract from S.decurrens for different times,and the mitotic index,frequency of micronucleus and chromosomal aberration of root tips in V.faba were detected,so as to reveal the allelopathic potential and the potential ecological risks of S.decurrens at the cellular level.[Results]The decrease in the mitotic index caused by the aqueous extract of S.decurrens was positively related to the concentration of the aqueous extract and the treatment time.The aqueous extract of S.decurrens increased the frequency of micronucleus in root tip cells of V.faba,and the increase was positively related to the concentration of the aqueous extract and the treatment time.The aqueous extract of S.decurrens caused abnormal phenomena such as chromosome bridges,chromosome fragmentation,and chromosome lag in V.faba root tip cells,and the effect of the aqueous extract on V.faba root tips had significant effects dependent on time and concentration.Above results indicate that the aqueous extract of S.decurrens inhibited and damaged the mitosis of V.faba root tip cells to some degrees,had certain genetic toxicity and had the ability to rapidly spread.[Conclusions]This study provides a theoretical basis for scientifically and rationally using S.decurrens and preventing the spread of S.decurrens.展开更多
This study investigated forest cover change and the driving forces behind it in Fagita Lekoma District of Ethiopia that resulted in increased forest cover,which might be uncommon outside this case study area.The LULC ...This study investigated forest cover change and the driving forces behind it in Fagita Lekoma District of Ethiopia that resulted in increased forest cover,which might be uncommon outside this case study area.The LULC change analysis was made from 2003 to 2017 based on Landsat images.Socioeconomic analysis was carried out to identify the major driving forces that resulted in LULC change.A questionnaire survey,focused group discussion,key informant interviews and field observation were employed to analyze the link between LULC change and the driving forces.The 15-year period(2003–2017)image analysis revealed that the coverage of forest lands,built-up areas and grassland has increased by 256%,100%and 96%,respectively,at the expense of cultivated lands and wetlands.The increased forest cover is due to the woodlots expansion of Acacia decurrens Willd,which are designed for sustainable livelihoods and a land revitalization strategy in the study area.Rapid population growth,an increasing demand for charcoal and subsequent market opportunities,preferred qualities of A.decurrens or black wattle to halt land degradation as well as to improve land productivity,have been identified as the major driving forces of forest cover change.Chi squared analysis revealed that:a comparative cash income from the sale of A.decurrens;a dependency on natural forests;the distance from the district administrative center;the size of the active labor force,and the area of land owned have significantly affected the cover change.The major forest cover change is due to the expansion of A.decurrens plantations that have socioeconomic and environmental implications to improve rural livelihoods and revitalize the land.Thus,the positive experiences identified in this study should be scaled-up and applied in other similar settings.展开更多
Producing Brazilian Cerrado plants, especially ones endangered, is essential for your maintenance. In this way, fertilization is furthermore uncertain. Here, we demonstrate the impact of soil addition of nitrogen (N, ...Producing Brazilian Cerrado plants, especially ones endangered, is essential for your maintenance. In this way, fertilization is furthermore uncertain. Here, we demonstrate the impact of soil addition of nitrogen (N, 4.20, 18.90, 31.50, 44.10 and 59.85 mg·dm-3) and phosphorus (P, 9.56, 57.38, 95.62, 133.86 and 181.67 mg·dm-3) fertilizers levels on the development and on nutrients uptake by Jacaranda decurrens subsp. symmetrifoliolata (carobinha), species of the Brazilian Cerrado, in a long term pot trial. The N and P addition together increased plant height and N concentration in roots. N and P also increased the P concentration and content on the roots in young plants, but in the older plants, isolated effect of both was stronger than their combined action. The N addition promoted branching, production of dry leaves and dry xylopodium, contents of K, Ca and P on the leaves, and N content on the roots. However, the N reduced xylopodium diameter, leaf area, and Mg contents in the young plants, but increased them in the older plants. The P addition increased stem diameter and dry biomass, P concentration and N content on the leaves, Ca content on the roots and also reduced N concentration on the leaves. However, the P addition increased Mg concentration on the roots in the young plants and reduced it in the older plants. In general, N levels ranging between 25.69 - 38.85 mg·dm-3 and P levels between 84.39 - 109.23 mg·dm-3 promote more effectively the plant development. Thus, N and P fertilization can promote the aerial development of plant and a differential allocation of nutrients between the carobinha tissues.展开更多
文摘Planting a fast-growing multipurpose Acacia decurrens (AD) tree is one of the climate-smart agricultural practices that have been promoted in Ethiopia, which is widely practiced and an important livelihood strategy in Awi zone. However, the extent of its adoption varies considerably among households in the study area. This study investigated the determinants of intensity of adoption of AD among 385 randomly selected rural households in Awi Zone. Data were gathered using a cross-sectional household survey. Descriptive statistics and Two-limit Tobit model were employed for data analysis. The result of the study shows that on average the intensity of adoption of AD was 0.43 (43% of the total cropland area), though majority of the farmers (48.8%) belong to low level of adoption. The result of the analysis shows that being male, educational level, access to seedling, experience in growing the tree, extension contact has positive and significant relationship with the intensity of adoption. Age of head of household, land holding size, livestock holding size, soil fertility status, disease emergence and road distance have negative and significant influence on intensity of adoption. These suggest that expanding road infrastructure, education, access to seedling, secure land property right, disease management, and provision of extension services related to the AD can also improve smallholder farmers’ intensity of AD adoption. The generated information provides a picture of the study area’s situation to the attention of policy makers, development practitioners and institutional service providers to formulate a better policy intervention to sustain smallholder farmers’ AD plantation.
基金funded by Science and Technology Research Partnership for Sustainable Development(SATREPS,grant number JPMJSA1601)Japan Science and Technology Agency(JST)/Japan International Cooperation Agency(JICA).
文摘Background:Evaluating the impacts of land-use/land-cover(LULC)changes on ecosystem service values(ESVs)is essential for sustainable use and management of ecosystems.In this study,we evaluated the impact of human activity driven LULC changes on ESVs over the period 1982–2016/17 in contrasting agro-ecological environments:Guder(highland),Aba Gerima(midland),and Debatie(lowland)watersheds of the Upper Blue Nile basin,Ethiopia.Results:During the study period,the continuous expansion of cultivated land at the expense of natural vegetation(bushland,forest,and grazing land)severely reduced the total ESV by about US$58 thousand(35%)in Aba Gerima and US$31 thousand(29%)in Debatie watersheds.In contrast,the unprecedented expansion of plantations,mainly through the planting of Acacia decurrens,led,from 2006,to a ESV rebound by about US$71 thousand(54%)in Guder watershed,after it had decreased by about US$61 thousand(32%)between 1982 and 2006.The reduction in natural forest area was the major contributor to the loss of total ESV in the study watersheds,ranging from US$31 thousand(63%)in Debatie to US$96.9 thousand(70%)in Guder between 1982 and 2016/17.On an areaspecific basis,LULC changes reduced the average ESV from US$560 ha^(−1) year^(−1)(1982)in Guder to US$306 ha^(−1) year^(−1)(2017)in Debatie watersheds.Specific ESVs such as provisioning(mainly as food production)and regulating services(mainly as erosion control and climate regulation)accounted for most of the total ESVs estimated for the study watersheds.Conclusions:In most cases,the total and specific ESVs of the watersheds were negatively associated with the population growth,which in turn was positively associated with the expansion of cultivated land over the study period.In Guder,however,ESVs were positively associated with population growth,especially after 2012.This is mainly due to the expansion of Acacia decurrens plantations.Our results suggest,therefore,that future policy measures and directions should focus on improving vegetation cover through p
基金Innovation Center Team Project of Hubei Collaborative Innovation Center for the Characteristic Resources Exploration of Dabie Mountains(2015TD07)。
文摘[Objectives]This study was conducted to analyze the genetic toxicity of Solidago decurrens,with a view to scientifically and safely using S.decurrens.[Methods]Using commercially available S.decurrens as an experimental material,according to Vicia faba root tip micronucleus technique,V.faba root tips were treated with different doses of aqueous extract from S.decurrens for different times,and the mitotic index,frequency of micronucleus and chromosomal aberration of root tips in V.faba were detected,so as to reveal the allelopathic potential and the potential ecological risks of S.decurrens at the cellular level.[Results]The decrease in the mitotic index caused by the aqueous extract of S.decurrens was positively related to the concentration of the aqueous extract and the treatment time.The aqueous extract of S.decurrens increased the frequency of micronucleus in root tip cells of V.faba,and the increase was positively related to the concentration of the aqueous extract and the treatment time.The aqueous extract of S.decurrens caused abnormal phenomena such as chromosome bridges,chromosome fragmentation,and chromosome lag in V.faba root tip cells,and the effect of the aqueous extract on V.faba root tips had significant effects dependent on time and concentration.Above results indicate that the aqueous extract of S.decurrens inhibited and damaged the mitosis of V.faba root tip cells to some degrees,had certain genetic toxicity and had the ability to rapidly spread.[Conclusions]This study provides a theoretical basis for scientifically and rationally using S.decurrens and preventing the spread of S.decurrens.
基金The work was supported by the Shanghai Science and Technology Innovation Fund for Soft Science(17692102400)the Shanghai Pujiang Program(17PJC098).
文摘This study investigated forest cover change and the driving forces behind it in Fagita Lekoma District of Ethiopia that resulted in increased forest cover,which might be uncommon outside this case study area.The LULC change analysis was made from 2003 to 2017 based on Landsat images.Socioeconomic analysis was carried out to identify the major driving forces that resulted in LULC change.A questionnaire survey,focused group discussion,key informant interviews and field observation were employed to analyze the link between LULC change and the driving forces.The 15-year period(2003–2017)image analysis revealed that the coverage of forest lands,built-up areas and grassland has increased by 256%,100%and 96%,respectively,at the expense of cultivated lands and wetlands.The increased forest cover is due to the woodlots expansion of Acacia decurrens Willd,which are designed for sustainable livelihoods and a land revitalization strategy in the study area.Rapid population growth,an increasing demand for charcoal and subsequent market opportunities,preferred qualities of A.decurrens or black wattle to halt land degradation as well as to improve land productivity,have been identified as the major driving forces of forest cover change.Chi squared analysis revealed that:a comparative cash income from the sale of A.decurrens;a dependency on natural forests;the distance from the district administrative center;the size of the active labor force,and the area of land owned have significantly affected the cover change.The major forest cover change is due to the expansion of A.decurrens plantations that have socioeconomic and environmental implications to improve rural livelihoods and revitalize the land.Thus,the positive experiences identified in this study should be scaled-up and applied in other similar settings.
基金the Foundation for Support to the Development of Teaching,Science and Technology of the Mato Grosso do Sul State-FUNDECTthe Coordination for the Improvement of Higher Education Personnel-CAPES for the financial support for the accomplishment and publication of the present work.
文摘Producing Brazilian Cerrado plants, especially ones endangered, is essential for your maintenance. In this way, fertilization is furthermore uncertain. Here, we demonstrate the impact of soil addition of nitrogen (N, 4.20, 18.90, 31.50, 44.10 and 59.85 mg·dm-3) and phosphorus (P, 9.56, 57.38, 95.62, 133.86 and 181.67 mg·dm-3) fertilizers levels on the development and on nutrients uptake by Jacaranda decurrens subsp. symmetrifoliolata (carobinha), species of the Brazilian Cerrado, in a long term pot trial. The N and P addition together increased plant height and N concentration in roots. N and P also increased the P concentration and content on the roots in young plants, but in the older plants, isolated effect of both was stronger than their combined action. The N addition promoted branching, production of dry leaves and dry xylopodium, contents of K, Ca and P on the leaves, and N content on the roots. However, the N reduced xylopodium diameter, leaf area, and Mg contents in the young plants, but increased them in the older plants. The P addition increased stem diameter and dry biomass, P concentration and N content on the leaves, Ca content on the roots and also reduced N concentration on the leaves. However, the P addition increased Mg concentration on the roots in the young plants and reduced it in the older plants. In general, N levels ranging between 25.69 - 38.85 mg·dm-3 and P levels between 84.39 - 109.23 mg·dm-3 promote more effectively the plant development. Thus, N and P fertilization can promote the aerial development of plant and a differential allocation of nutrients between the carobinha tissues.