An isospectral problem with four potentials is discussed. The corresponding hierarchy of nonlinearevolution equations is derived. It is shown that the AKNS, Levi, D-AKNS hierarchies and a new oneare reductions of the... An isospectral problem with four potentials is discussed. The corresponding hierarchy of nonlinearevolution equations is derived. It is shown that the AKNS, Levi, D-AKNS hierarchies and a new oneare reductions of the above hierarchy. In each case the relevant Hamiltonian form is established bymaking use of the trase identity.展开更多
The Lax system for the AKNS vector field is nonlinearized and becomes naturally compatible under the constraint induced by a relation (q,r) = f(ψ) between reflectionless potentials and the eigenfunctions of the Zakha...The Lax system for the AKNS vector field is nonlinearized and becomes naturally compatible under the constraint induced by a relation (q,r) = f(ψ) between reflectionless potentials and the eigenfunctions of the Zakharov-Shabat eigenvalue problem (ZS). The spatial part (ZS) is nonlinearized as a completely integrable system in the Liouville sense with the Hamiltonian:H = <iZψ1, ψ2> + 1/2<ψ1,ψ1><ψ2,ψ2>in the symplectic manifold (R2N, dψ1(?)dψ2), whose solution variety (?) is an invariant set of the S-flow defined by the nonlinearized time part. Moreover, f maps (?) into the solution variety of a stationary AKNS equation, and maps the S-flow on (?) into the AKNS-flow on f((?)).展开更多
The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical system...The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.展开更多
We study the number of zeros of Abelian integrals for the quadratic centers having almost all their orbits formed by cubics, when we perturb such systems inside the class of all polynomial systems of degree n.
A soliton hierarchy of multicomponent AKNS equations is generated from an arbitraryorder matrix spectral problem, along with its bi-Hamiltonian formulation. Adjoint symmetry constraints are presented to manipulate bi...A soliton hierarchy of multicomponent AKNS equations is generated from an arbitraryorder matrix spectral problem, along with its bi-Hamiltonian formulation. Adjoint symmetry constraints are presented to manipulate binary nonlinearization for the associated arbitrary order matrix spectral problem. The resulting spatial and temporal constrained flows are shown to provide integrable decompositions of the multicomponent AKNS equations.展开更多
Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational ide...Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.展开更多
A Bargmann symmetry constraint is proposed for the Lax pairg and the adjoint Lax pairs of the Dirac systems.It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensiona...A Bargmann symmetry constraint is proposed for the Lax pairg and the adjoint Lax pairs of the Dirac systems.It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensional Liouville integrable Hamiltonian system and that nnder the control of the spatial part,the time parts of the nonlinearized Lax pairs and adjoint Lax pairs are interpreted as a hierarchy of commntative,finite dimensional Lionville integrable Hamiltonian systems whose Hamiltonian functions consist of a series of integrals of motion for the spatial part.Moreover an involutive representation of solutions of the Dirac systema exhibits their integrability by quadratures.This kind of symmetry constraint procedure involving the spectral problem and the adjoint spectral problem is referred to as a binary nonlinearization technique like a binary Darboux transformation.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
An isospectral problem with four potentials is discussed. The corresponding hierarchy of Lax integrable evolution equations is derived. For the hierarchy, it is shown that there exist other new reductions except thos... An isospectral problem with four potentials is discussed. The corresponding hierarchy of Lax integrable evolution equations is derived. For the hierarchy, it is shown that there exist other new reductions except those presented by Tu, Meng and Ma. For each reduction case the relevant Hamiltonian structure is established by means of trace identity.展开更多
A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6...A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.展开更多
We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and the...We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.展开更多
Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, t...Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively.展开更多
We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads ...We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads to abundant coherent structures. However, in the general nonintegrable case, an additional condition has to be introduced for these arbitrary functions. Although the additional condition has been introduced into the solutions of the nonintegrable KdV equation, there still exist many interesting solitary wave structures. Especially, the nonintegrable KdV equation possesses the breather-like localized excitations, and the similar static ring soliton solutions as in the integrable case. Furthermor,in the integrable case, the interaction between two travelling ring solitons is elastic, while in the nonintegrable case we cannot find even the single travelling ring soliton solution.展开更多
A new loop algebra and a new Lax pair are constructed, respectively. It follows that the integrable coupling of the TC hierarchy of equations, which is also an expanding integrable model, is obtained. Specially, the i...A new loop algebra and a new Lax pair are constructed, respectively. It follows that the integrable coupling of the TC hierarchy of equations, which is also an expanding integrable model, is obtained. Specially, the integrable coupling of the famous KdV equation is presented.展开更多
An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the sup...An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.展开更多
基金The project supported by National Natural Science Foundation Committeethrough Nankai Institute of Mathematics
文摘 An isospectral problem with four potentials is discussed. The corresponding hierarchy of nonlinearevolution equations is derived. It is shown that the AKNS, Levi, D-AKNS hierarchies and a new oneare reductions of the above hierarchy. In each case the relevant Hamiltonian form is established bymaking use of the trase identity.
基金Project supported by the National Natural Science Foundation of China
文摘The Lax system for the AKNS vector field is nonlinearized and becomes naturally compatible under the constraint induced by a relation (q,r) = f(ψ) between reflectionless potentials and the eigenfunctions of the Zakharov-Shabat eigenvalue problem (ZS). The spatial part (ZS) is nonlinearized as a completely integrable system in the Liouville sense with the Hamiltonian:H = <iZψ1, ψ2> + 1/2<ψ1,ψ1><ψ2,ψ2>in the symplectic manifold (R2N, dψ1(?)dψ2), whose solution variety (?) is an invariant set of the S-flow defined by the nonlinearized time part. Moreover, f maps (?) into the solution variety of a stationary AKNS equation, and maps the S-flow on (?) into the AKNS-flow on f((?)).
基金National Natural Science Foundation of China(No.19731003,No.19961003)Yunnan Provincial Natural Science Foundation of China(No.1999A0018M,No.2000A0002M)
文摘The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.
基金This work was supported by theNational Natural Science Foundation of China (Grant No. 10101031) Guangdong Natural Science Foundations (Grant No. 001289) Natural Science Foundation of Zhongshan University for young teachers.
文摘We study the number of zeros of Abelian integrals for the quadratic centers having almost all their orbits formed by cubics, when we perturb such systems inside the class of all polynomial systems of degree n.
基金Research Grants Council of Hong Kong(CERG 9040466)City University of Hong Kong(SRGs 7001041,7001178)+2 种基金National Science Foundation of China(No.19801031)Special Grant of Excellent PhD Thesis(No.200013)Special Funds for Major State Basjc Reaca
文摘A soliton hierarchy of multicomponent AKNS equations is generated from an arbitraryorder matrix spectral problem, along with its bi-Hamiltonian formulation. Adjoint symmetry constraints are presented to manipulate binary nonlinearization for the associated arbitrary order matrix spectral problem. The resulting spatial and temporal constrained flows are shown to provide integrable decompositions of the multicomponent AKNS equations.
基金Supported by the Fundamental Research Funds of the Central University under Grant No. 2010LKS808the Natural Science Foundation of Shandong Province under Grant No. ZR2009AL021
文摘Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.
文摘A Bargmann symmetry constraint is proposed for the Lax pairg and the adjoint Lax pairs of the Dirac systems.It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensional Liouville integrable Hamiltonian system and that nnder the control of the spatial part,the time parts of the nonlinearized Lax pairs and adjoint Lax pairs are interpreted as a hierarchy of commntative,finite dimensional Lionville integrable Hamiltonian systems whose Hamiltonian functions consist of a series of integrals of motion for the spatial part.Moreover an involutive representation of solutions of the Dirac systema exhibits their integrability by quadratures.This kind of symmetry constraint procedure involving the spectral problem and the adjoint spectral problem is referred to as a binary nonlinearization technique like a binary Darboux transformation.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金the Postdoctoral Science Foundation of China,Chinese National Basic Research Project "Mathematics Mechanization and a Platform for Automated Reasoning".
文摘 An isospectral problem with four potentials is discussed. The corresponding hierarchy of Lax integrable evolution equations is derived. For the hierarchy, it is shown that there exist other new reductions except those presented by Tu, Meng and Ma. For each reduction case the relevant Hamiltonian structure is established by means of trace identity.
基金Project supported by the Natural Science Foundation of Shanghai (Grant No. 09ZR1410800)the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No. KLMM0806)+2 种基金the Shanghai Leading Academic Discipline Project (Grant No. J50101)the Key Disciplines of Shanghai Municipality (Grant No. S30104)the National Natural Science Foundation of China (Grant Nos. 61072147 and 11071159)
文摘A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.
文摘We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471139
文摘Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively.
文摘We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads to abundant coherent structures. However, in the general nonintegrable case, an additional condition has to be introduced for these arbitrary functions. Although the additional condition has been introduced into the solutions of the nonintegrable KdV equation, there still exist many interesting solitary wave structures. Especially, the nonintegrable KdV equation possesses the breather-like localized excitations, and the similar static ring soliton solutions as in the integrable case. Furthermor,in the integrable case, the interaction between two travelling ring solitons is elastic, while in the nonintegrable case we cannot find even the single travelling ring soliton solution.
文摘A new loop algebra and a new Lax pair are constructed, respectively. It follows that the integrable coupling of the TC hierarchy of equations, which is also an expanding integrable model, is obtained. Specially, the integrable coupling of the famous KdV equation is presented.
基金Project supported by the Hangdian Foundation (No. KYS075608072)the National Natural Science Foundation of China (Nos. 10671187, 10971109)the Program for New Century Excellent Talents in University of China (No. NCET-08-0515)
文摘An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.