In this article, a routing protocol EARP (Energy Aware Routing Protocol) with the terminal node is proposed, to deal with the impact of the limited energy resources of Cognitive Radio Networks on the whole network rou...In this article, a routing protocol EARP (Energy Aware Routing Protocol) with the terminal node is proposed, to deal with the impact of the limited energy resources of Cognitive Radio Networks on the whole network routing. The protocol allows choosing the route from the neighbor nodes in different transmission paths, according to energy consumption of a single node and the full path. If the path breaks, the protocol will increase local routing maintenance strategy. It effectively reduces the retransmission caused by the situation, and improves the routing efficiency. It also can prevent the link transmission process selecting the fault route due to the energy depletion. Through simulation experiments compared with the LEACH (Low Energy Adaptive Clustering Hierarchy) routing protocol, the results showed that in the same experimental environment, the proposed EARP could obviously balance the load, protect low energy nodes, prolong the network survival time and reduce packet loss rate and packet delay of data delivery. So it can improve the energy consumption of sensing node and provide routing capabilities.展开更多
As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrate...As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrated services information (NISI) in a global navigation satellite system (GNSS) with inter-satellite links (ISLs) is studied by taking the real situation of inter-satellite communication links into account. An on-demand computing and buffering centralized route strategy is proposed based on dynamic grouping and the topology evolution law of the GNSS network within which the satellite nodes are operated in the manner of dynamic grouping. Dynamic grouping is based on satellites spatial relationships and the group role of the satellite node changes by turns due to its spatial relationships. The route strategy provides significant advantages of high efficiency, low complexity, and flexi- ble configuration, by which the established GNSS can possess the features and capabilities of feasible deployment, efficient transmission, convenient management, structural invulnerability and flexible expansion.展开更多
信息物理融合电力系统连锁故障中,信息层延时对故障的发展起到推波助澜的作用。为了降低系统故障风险,有必要在故障环境下分析降低延时的方法及其影响。为了缓解信息层信息传输延时和拥塞,首先将软件定义网络(soft defined networks,SD...信息物理融合电力系统连锁故障中,信息层延时对故障的发展起到推波助澜的作用。为了降低系统故障风险,有必要在故障环境下分析降低延时的方法及其影响。为了缓解信息层信息传输延时和拥塞,首先将软件定义网络(soft defined networks,SDN)的构架引入信息物理融合电力系统信息层,提出基于SDN的信息层动态优化路由策略。进而对比了小世界信息层网络和无标度信息层网络下,采用静态路由策略和SDN动态优化路由策略时的传输延时和节点拥堵情况。最后,回到信息物理融合电力系统连锁故障模拟场景,对比讨论了两种路由策略对不同规模连锁故障发展的影响。在小世界信息层网络和无标度信息层网络中,采用SDN动态优化路由策略平衡了不同节点的排队压力,缓解了拥堵程度,降低了最长信息传输延时和平均信息传输延时。连锁故障模拟表明,信息层动态优化路由策略提高了故障中物理电网安全控制的准确性且降低了连锁故障风险。展开更多
文摘In this article, a routing protocol EARP (Energy Aware Routing Protocol) with the terminal node is proposed, to deal with the impact of the limited energy resources of Cognitive Radio Networks on the whole network routing. The protocol allows choosing the route from the neighbor nodes in different transmission paths, according to energy consumption of a single node and the full path. If the path breaks, the protocol will increase local routing maintenance strategy. It effectively reduces the retransmission caused by the situation, and improves the routing efficiency. It also can prevent the link transmission process selecting the fault route due to the energy depletion. Through simulation experiments compared with the LEACH (Low Energy Adaptive Clustering Hierarchy) routing protocol, the results showed that in the same experimental environment, the proposed EARP could obviously balance the load, protect low energy nodes, prolong the network survival time and reduce packet loss rate and packet delay of data delivery. So it can improve the energy consumption of sensing node and provide routing capabilities.
文摘As each type of satellite network has different link features, its data transmission must be designed based on its link features to improve the efficiency of data transferring. The transmission of navigation integrated services information (NISI) in a global navigation satellite system (GNSS) with inter-satellite links (ISLs) is studied by taking the real situation of inter-satellite communication links into account. An on-demand computing and buffering centralized route strategy is proposed based on dynamic grouping and the topology evolution law of the GNSS network within which the satellite nodes are operated in the manner of dynamic grouping. Dynamic grouping is based on satellites spatial relationships and the group role of the satellite node changes by turns due to its spatial relationships. The route strategy provides significant advantages of high efficiency, low complexity, and flexi- ble configuration, by which the established GNSS can possess the features and capabilities of feasible deployment, efficient transmission, convenient management, structural invulnerability and flexible expansion.
文摘信息物理融合电力系统连锁故障中,信息层延时对故障的发展起到推波助澜的作用。为了降低系统故障风险,有必要在故障环境下分析降低延时的方法及其影响。为了缓解信息层信息传输延时和拥塞,首先将软件定义网络(soft defined networks,SDN)的构架引入信息物理融合电力系统信息层,提出基于SDN的信息层动态优化路由策略。进而对比了小世界信息层网络和无标度信息层网络下,采用静态路由策略和SDN动态优化路由策略时的传输延时和节点拥堵情况。最后,回到信息物理融合电力系统连锁故障模拟场景,对比讨论了两种路由策略对不同规模连锁故障发展的影响。在小世界信息层网络和无标度信息层网络中,采用SDN动态优化路由策略平衡了不同节点的排队压力,缓解了拥堵程度,降低了最长信息传输延时和平均信息传输延时。连锁故障模拟表明,信息层动态优化路由策略提高了故障中物理电网安全控制的准确性且降低了连锁故障风险。