Electrocatalytic NO reduction reaction to generate NH_(3)under ambient conditions offers an attractive alternative to the energy-extensive Haber-Bosch route;however,the challenge still lies in the development of cost-...Electrocatalytic NO reduction reaction to generate NH_(3)under ambient conditions offers an attractive alternative to the energy-extensive Haber-Bosch route;however,the challenge still lies in the development of cost-effective and high-performance electrocatalysts.Herein,nanoporous VN film is first designed as a highly selective and stable electrocatalyst for catalyzing reduction of NO to NH_(3)with a maximal Faradaic efficiency of 85%and a peak yield rate of 1.05×10^(-7)mol·cm^(-2)·s^(-1)(corresponding to 5,140.8mg·h^(-1)·mg_(cat).^(-1))at-0.6 V vs.reversible hydrogen electrode in acid medium.Meanwhile,this catalyst maintains an excellent activity with negligible current density and NH_(3)yield rate decays over 40 h.Moreover,as a proof-of-concept of Zn-NO battery,it delivers a high power density of 2.0 mW·cm^(-2)and a large NH_(3)yield rate of 0.22×10^(-7)mol·cm^(-2)·s^(-1)(corresponding to 1,077.1mg·h^(-1)·mg_(cat).^(-1)),both of which are comparable to the best-reported results.Theoretical analyses confirm that the VN surface favors the activation and hydrogenation of NO by suppressing the hydrogen evolution.This work highlights that the electrochemical NO reduction is an eco-friendly and energy-efficient strategy to produce NH_(3).展开更多
Solid-state thermoelectric technology uses electrons or holes as the working fluid for heat pumping and power generation.Adopting the technology in harvesting solar heat,converting waste industrial heat into electrici...Solid-state thermoelectric technology uses electrons or holes as the working fluid for heat pumping and power generation.Adopting the technology in harvesting solar heat,converting waste industrial heat into electricity,and pumping out operational heat has tremendous potential in solid-state electronics applications.A combination of highly efficient electronic transport and low heat conductivity is a prerequisite for excellent thermoelectric performance.As these two requirements are substantially orthogonal,their synchronous realization is difficult in practice,hindering the commercial use of thermoelectricity[1,2].Scientists from the Shanghai Institute of Ceramics,Chinese Academy of Sciences,in collaboration with scien-展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22075211,22109118,21601136,51971157,51621003,and 21905246)Tianjin Science Fund for Distinguished Young Scholars(No.19JCJQJC61800)The authors would also like to express their gratitude to Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia for funding this work through the Research Group Program under No.RGP.2/79/43.
文摘Electrocatalytic NO reduction reaction to generate NH_(3)under ambient conditions offers an attractive alternative to the energy-extensive Haber-Bosch route;however,the challenge still lies in the development of cost-effective and high-performance electrocatalysts.Herein,nanoporous VN film is first designed as a highly selective and stable electrocatalyst for catalyzing reduction of NO to NH_(3)with a maximal Faradaic efficiency of 85%and a peak yield rate of 1.05×10^(-7)mol·cm^(-2)·s^(-1)(corresponding to 5,140.8mg·h^(-1)·mg_(cat).^(-1))at-0.6 V vs.reversible hydrogen electrode in acid medium.Meanwhile,this catalyst maintains an excellent activity with negligible current density and NH_(3)yield rate decays over 40 h.Moreover,as a proof-of-concept of Zn-NO battery,it delivers a high power density of 2.0 mW·cm^(-2)and a large NH_(3)yield rate of 0.22×10^(-7)mol·cm^(-2)·s^(-1)(corresponding to 1,077.1mg·h^(-1)·mg_(cat).^(-1)),both of which are comparable to the best-reported results.Theoretical analyses confirm that the VN surface favors the activation and hydrogenation of NO by suppressing the hydrogen evolution.This work highlights that the electrochemical NO reduction is an eco-friendly and energy-efficient strategy to produce NH_(3).
文摘Solid-state thermoelectric technology uses electrons or holes as the working fluid for heat pumping and power generation.Adopting the technology in harvesting solar heat,converting waste industrial heat into electricity,and pumping out operational heat has tremendous potential in solid-state electronics applications.A combination of highly efficient electronic transport and low heat conductivity is a prerequisite for excellent thermoelectric performance.As these two requirements are substantially orthogonal,their synchronous realization is difficult in practice,hindering the commercial use of thermoelectricity[1,2].Scientists from the Shanghai Institute of Ceramics,Chinese Academy of Sciences,in collaboration with scien-