With the development of radioactive-ion-beam facilities,many exotic phenomena have been discovered or predicted in the nuclei far from the stability line,including cluster structure,shell structure,deformed halo,and s...With the development of radioactive-ion-beam facilities,many exotic phenomena have been discovered or predicted in the nuclei far from the stability line,including cluster structure,shell structure,deformed halo,and shape decoupling effects.The study of exotic nuclear phenomena is at the frontier of nuclear physics nowadays.The covariant density functional theory(CDFT)is one of the most successful microscopic models in describing the structure of nuclei in almost the whole nuclear chart.Within the framework of CDFT,toward a proper treatment of deformation and weak binding,the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)has been developed.In this contribution,we review the applications and extensions of the DRHBc theory to the study of exotic nuclei.The DRHBc theory has been used to investigate the deformed halos in B,C,Ne,Na,and Mg isotopes and the theoretical descriptions are reasonably consistent with available data.A DRHBc Mass Table Collaboration has been founded,aiming at a high precision nuclear mass table with deformation and continuum effects included,which is underway.By implementing the angular momentum projection based on the DRHBc theory,the rotational excitations of deformed halos have been investigated and it is shown that the deformed halos and shape decoupling effects also exist in the low-lying rotational excitation states of deformed halo nuclei.展开更多
Excitation( Texc ) and rotation( Trot ) temperatures were determined under different conditions for an oxygen-shielded argon microwave plasmsa torch source(OS-Ar-MPT). The Texc value, which was shown to be betwe...Excitation( Texc ) and rotation( Trot ) temperatures were determined under different conditions for an oxygen-shielded argon microwave plasmsa torch source(OS-Ar-MPT). The Texc value, which was shown to be between 4300 and 5250 K under different operating conditions, was calculated from the slope of the Boltzmann plot with Fe as the thermometric species. The Trot value, which was in the range of 2100-2500 K, was measured with OH molecular spectra. The influences of microwave power, flow rates of the support gas, cartier gas, and shielding gas, as well as the observation height on Texc and Trot were investigated and discussed. The detailed results of Texc and Trot provided a better understanding of the performance of an OS-ArMPT as a source for atomic emission spectrometry.展开更多
Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a^1?) →H_2(X^1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energ...Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a^1?) →H_2(X^1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energy surface reported by Li et al.[Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k-k' distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k-k' distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j' of the product H_2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment.展开更多
The stereodynamics of the abstraction reaction H^+ NeH^+(v = 1-3,j = 1,3,5) → H2^+ + Ne is studied theoretically with a quasi-classical trajectory method on a new ab initio potential energy surface [ S J,Zhang ...The stereodynamics of the abstraction reaction H^+ NeH^+(v = 1-3,j = 1,3,5) → H2^+ + Ne is studied theoretically with a quasi-classical trajectory method on a new ab initio potential energy surface [ S J,Zhang P Y,Han K L and He G Z 2012 J.Chem.Phys.132 014303].The effects of vibrational and rotational excitation of reagent molecules on the polarization of the product are investigated.The reaction cross sections,the distributions of P(θr),P(φr),and polarizationdependent differential cross sections(PDDCSs) are calculated.The obtained cross sections indicate that the title reaction is a typical barrierless atom(ion)-ion(molecule) reaction.The initial vibrational excitation and rotational excitation of reagent molecules have distinctly different influences on stereodynamics of the title reaction,and the possible reasons for the differences are presented.展开更多
The stereodynamic properties of the F + HO (v, j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1At and 3At potential energy surfaces (PESs). Based on the polarization-...The stereodynamic properties of the F + HO (v, j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1At and 3At potential energy surfaces (PESs). Based on the polarization-dependent differential cross sections (PDDCSs) and the angular distributions of the product angular momentum with the reactant at different values of initial v or j, the results show that the product scattering and product polarization have strong links with initial vibrationalrotational numbers of v and j. The significant manifestation of the normal DCSs is that the forward scattering gradually becomes predominant with the initial vibrational excitation increasing, and the scattering angle of the HF product taking place on the 3At potential energy surface is found to be more sensitive to the initial value of v. The product orientation and alignment are strongly dependent on the initial rovibrational excitation effect. With enhancement in the initial rovibrational excitation effect, there is an overall decrease in the product orientation as well as in the product alignment either perpendicular to the reagent relative velocity vector k or along the direction of the y axis, for which the initial rotational excitation effect is much more noticeable than the vibrational excitation effect. Moreover, the initial rovibrational excitation effect on the product polarization is more pronounced for the 3At potential energy surface than for the 1At potential energy surface.展开更多
The stereodynamic properties of the reaction C (^3P) + NO (X2^П) →CN (X^2∑^+) + O (^3P) in different rotational states of reactant NO are studied theoretically by using the quasiclassical trajectory met...The stereodynamic properties of the reaction C (^3P) + NO (X2^П) →CN (X^2∑^+) + O (^3P) in different rotational states of reactant NO are studied theoretically by using the quasiclassical trajectory method on ^2A″ and ^2A′ potential energy surfaces (PESs) at a collision energy of 0.06 eV. The vector properties in different rotational states on the two surfaces are discussed in detail. The results indicate that the rotational excitation of NO has considerable influence on the stereodynamic property of the reaction occurring on the two surfaces. At the same time, the calculated polarization-dependent differential cross sections (PDDCSs) in different initial rotational states manifest that products are strongly polarized at three scattering angles.展开更多
To explore the rotational excitation of deformed halo nuclei,the angular momentum projection(AMP)has been implemented in the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc),in which both the mean f...To explore the rotational excitation of deformed halo nuclei,the angular momentum projection(AMP)has been implemented in the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc),in which both the mean field and collective wave functions are expanded in terms of Dirac WoodsSaxon basis.The DRHBc+AMP approach self-consistently describes the coupling between single particle bound states and the continuum not only in the ground state but also in rotational states.The rotational modes of deformed halos in ^(42,44)Mg are investigated by studying properties of rotational states such as the excitation energy,configuration,and density distribution.Our study demonstrates that the deformed halo structure persists from the ground state in the intrinsic frame to collective states.Especially,the typical behavior of shape decoupling effects in rotating deformed halo nuclei is revealed.展开更多
The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactiv...The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactivity on the Fe(111)surface,based on a recently developed six-dimensional potential energy surface.Six-dimensional quantum dynamics study was carried out to investi-gate the effect of vibrational excitation for incidence energy below 1.6 eV,due to sig-nificant quantum effects for this reaction.The effects of vibrational and rotational excitations at high incidence energies were revealed by quasiclassical trajectory calculations.We found that raising the translational energy can enhance the dissociation probability to some extent,however,the vibrational excitation or rotational excitation can promote disso-ciation more efficiently than the same amount of translational energy.This study provides valuable insight into the mode-specific dynamics of this heavy diatom-surface reaction.展开更多
A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH4/air gas mixture has been investigated by optical emission spectrometer. The plasma parameters including the electr...A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH4/air gas mixture has been investigated by optical emission spectrometer. The plasma parameters including the electron excitation temperature, vibrational temperature and rotational temperature of the plasma jet at different discharge powers are diagnosed based on the assumption that the kinetic energy of the species obeys the Boltzmann distribution. The electron density at different power is also investigated by HS Stark broadening. The results show that the plasma source works under non-equilibrium conditions. It is also found that the vibrational temperature and rotational temperat;ure increase with discharge power, whereas the electron excitation temperature seems to have a downward trend. The electron density increases from 0.8×10^21 m^-3 to 1.1×10^21 m^-3 when the discharge power increases from 53 W to 94 W.展开更多
While experimenting with the more and more popular neodymium magnetic ball sets, the author developed a method, by which models of atomic nuclei can be created. These macroscopic models visually represent several feat...While experimenting with the more and more popular neodymium magnetic ball sets, the author developed a method, by which models of atomic nuclei can be created. These macroscopic models visually represent several features of nuclei and nuclear phenomena, which can be a useful mean during the teaching of nuclear physics. Even though such macroscopic models are unable to depict the true quantum physical nature of nuclear processes, they can be much more useful didactically than the previously used disordered sets of balls, to represent the atomic nucleus.展开更多
文摘With the development of radioactive-ion-beam facilities,many exotic phenomena have been discovered or predicted in the nuclei far from the stability line,including cluster structure,shell structure,deformed halo,and shape decoupling effects.The study of exotic nuclear phenomena is at the frontier of nuclear physics nowadays.The covariant density functional theory(CDFT)is one of the most successful microscopic models in describing the structure of nuclei in almost the whole nuclear chart.Within the framework of CDFT,toward a proper treatment of deformation and weak binding,the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)has been developed.In this contribution,we review the applications and extensions of the DRHBc theory to the study of exotic nuclei.The DRHBc theory has been used to investigate the deformed halos in B,C,Ne,Na,and Mg isotopes and the theoretical descriptions are reasonably consistent with available data.A DRHBc Mass Table Collaboration has been founded,aiming at a high precision nuclear mass table with deformation and continuum effects included,which is underway.By implementing the angular momentum projection based on the DRHBc theory,the rotational excitations of deformed halos have been investigated and it is shown that the deformed halos and shape decoupling effects also exist in the low-lying rotational excitation states of deformed halo nuclei.
基金Supported by the Science and Technology Development Program of Jilin Province, P. R. China(No. 20010306-1).
文摘Excitation( Texc ) and rotation( Trot ) temperatures were determined under different conditions for an oxygen-shielded argon microwave plasmsa torch source(OS-Ar-MPT). The Texc value, which was shown to be between 4300 and 5250 K under different operating conditions, was calculated from the slope of the Boltzmann plot with Fe as the thermometric species. The Trot value, which was in the range of 2100-2500 K, was measured with OH molecular spectra. The influences of microwave power, flow rates of the support gas, cartier gas, and shielding gas, as well as the observation height on Texc and Trot were investigated and discussed. The detailed results of Texc and Trot provided a better understanding of the performance of an OS-ArMPT as a source for atomic emission spectrometry.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474141and 11274149)the Program for Liaoning Excellent Talents in University,China(Grant No.LJQ2015040)+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China(Grant No.2014-1685)the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oilthe China Postdoctoral Science Foundation(Grant No.2014M550158)
文摘Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a^1?) →H_2(X^1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energy surface reported by Li et al.[Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k-k' distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k-k' distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j' of the product H_2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11105022)the Fundamental Research Funds for the Central Universities,China (Grant Nos. 2012QN066 and 2011QN142)
文摘The stereodynamics of the abstraction reaction H^+ NeH^+(v = 1-3,j = 1,3,5) → H2^+ + Ne is studied theoretically with a quasi-classical trajectory method on a new ab initio potential energy surface [ S J,Zhang P Y,Han K L and He G Z 2012 J.Chem.Phys.132 014303].The effects of vibrational and rotational excitation of reagent molecules on the polarization of the product are investigated.The reaction cross sections,the distributions of P(θr),P(φr),and polarizationdependent differential cross sections(PDDCSs) are calculated.The obtained cross sections indicate that the title reaction is a typical barrierless atom(ion)-ion(molecule) reaction.The initial vibrational excitation and rotational excitation of reagent molecules have distinctly different influences on stereodynamics of the title reaction,and the possible reasons for the differences are presented.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10874096 and 20633070)the Natural Science Foundation of Qingdao University,China (Grant No. 063-06300510)
文摘The stereodynamic properties of the F + HO (v, j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1At and 3At potential energy surfaces (PESs). Based on the polarization-dependent differential cross sections (PDDCSs) and the angular distributions of the product angular momentum with the reactant at different values of initial v or j, the results show that the product scattering and product polarization have strong links with initial vibrationalrotational numbers of v and j. The significant manifestation of the normal DCSs is that the forward scattering gradually becomes predominant with the initial vibrational excitation increasing, and the scattering angle of the HF product taking place on the 3At potential energy surface is found to be more sensitive to the initial value of v. The product orientation and alignment are strongly dependent on the initial rovibrational excitation effect. With enhancement in the initial rovibrational excitation effect, there is an overall decrease in the product orientation as well as in the product alignment either perpendicular to the reagent relative velocity vector k or along the direction of the y axis, for which the initial rotational excitation effect is much more noticeable than the vibrational excitation effect. Moreover, the initial rovibrational excitation effect on the product polarization is more pronounced for the 3At potential energy surface than for the 1At potential energy surface.
基金supported by the National Natural Science Foundation of China (Grant No. 41075027)
文摘The stereodynamic properties of the reaction C (^3P) + NO (X2^П) →CN (X^2∑^+) + O (^3P) in different rotational states of reactant NO are studied theoretically by using the quasiclassical trajectory method on ^2A″ and ^2A′ potential energy surfaces (PESs) at a collision energy of 0.06 eV. The vector properties in different rotational states on the two surfaces are discussed in detail. The results indicate that the rotational excitation of NO has considerable influence on the stereodynamic property of the reaction occurring on the two surfaces. At the same time, the calculated polarization-dependent differential cross sections (PDDCSs) in different initial rotational states manifest that products are strongly polarized at three scattering angles.
基金supported by the National Key R&D Program of China(2018YFA0404402)the National Natural Science Foundation of China(11525524,12070131001,12047503,11975237,and 11961141004)+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDB-SSWSYS013)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB34010000 and XDPB15)。
文摘To explore the rotational excitation of deformed halo nuclei,the angular momentum projection(AMP)has been implemented in the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc),in which both the mean field and collective wave functions are expanded in terms of Dirac WoodsSaxon basis.The DRHBc+AMP approach self-consistently describes the coupling between single particle bound states and the continuum not only in the ground state but also in rotational states.The rotational modes of deformed halos in ^(42,44)Mg are investigated by studying properties of rotational states such as the excitation energy,configuration,and density distribution.Our study demonstrates that the deformed halo structure persists from the ground state in the intrinsic frame to collective states.Especially,the typical behavior of shape decoupling effects in rotating deformed halo nuclei is revealed.
基金supported by the National Key R&D Program of China(No.2018YFE0203003)the National Natural Science Foundation of China(No.22173099 and No.22173101)the Liaoning Revitalization Talents Program(No.XLYC1907190)。
文摘The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactivity on the Fe(111)surface,based on a recently developed six-dimensional potential energy surface.Six-dimensional quantum dynamics study was carried out to investi-gate the effect of vibrational excitation for incidence energy below 1.6 eV,due to sig-nificant quantum effects for this reaction.The effects of vibrational and rotational excitations at high incidence energies were revealed by quasiclassical trajectory calculations.We found that raising the translational energy can enhance the dissociation probability to some extent,however,the vibrational excitation or rotational excitation can promote disso-ciation more efficiently than the same amount of translational energy.This study provides valuable insight into the mode-specific dynamics of this heavy diatom-surface reaction.
文摘A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH4/air gas mixture has been investigated by optical emission spectrometer. The plasma parameters including the electron excitation temperature, vibrational temperature and rotational temperature of the plasma jet at different discharge powers are diagnosed based on the assumption that the kinetic energy of the species obeys the Boltzmann distribution. The electron density at different power is also investigated by HS Stark broadening. The results show that the plasma source works under non-equilibrium conditions. It is also found that the vibrational temperature and rotational temperat;ure increase with discharge power, whereas the electron excitation temperature seems to have a downward trend. The electron density increases from 0.8×10^21 m^-3 to 1.1×10^21 m^-3 when the discharge power increases from 53 W to 94 W.
文摘While experimenting with the more and more popular neodymium magnetic ball sets, the author developed a method, by which models of atomic nuclei can be created. These macroscopic models visually represent several features of nuclei and nuclear phenomena, which can be a useful mean during the teaching of nuclear physics. Even though such macroscopic models are unable to depict the true quantum physical nature of nuclear processes, they can be much more useful didactically than the previously used disordered sets of balls, to represent the atomic nucleus.