Mass production of nanoparticles at low cost has attracted much attention from industrial and academic circles. In this paper, a novel method, the high gravity reactive precipitation (HGRP) technology, of manufacturin...Mass production of nanoparticles at low cost has attracted much attention from industrial and academic circles. In this paper, a novel method, the high gravity reactive precipitation (HGRP) technology, of manufacturing CaCO3 nanoparticles, presently scaled-up to an annual capacity of 10,000 tons, is presented. This paper describes the process principle, the process design and experiments on the syntheses of 15-30 nm CaCO3, 30-50 nm SiO2, 20-30 nm TiO2, 20-60 nm ZnO, 20-30 nm ZnS, 30 nm SrCO3, 40-70 nm BaTiO3, stick-like nano BaCO3 as well as nano-fibrillar aluminum hydroxide measuring 1-10 nm in diameter and 50-300 nm in length, using liquid-liquid, gas-liquid and gas-liquid-solid reactant systems. The advantage of using the HGRP technology is illustrated by comparison to conventional methods.展开更多
基金This work was fnancially supported by National Natural Science Foundation of China(No.20236020 and 50272008)Special Research Fund of Doctoral Subjects of Chinese Universities(No.20010010004)Fok Ying Tung Foundation.
文摘Mass production of nanoparticles at low cost has attracted much attention from industrial and academic circles. In this paper, a novel method, the high gravity reactive precipitation (HGRP) technology, of manufacturing CaCO3 nanoparticles, presently scaled-up to an annual capacity of 10,000 tons, is presented. This paper describes the process principle, the process design and experiments on the syntheses of 15-30 nm CaCO3, 30-50 nm SiO2, 20-30 nm TiO2, 20-60 nm ZnO, 20-30 nm ZnS, 30 nm SrCO3, 40-70 nm BaTiO3, stick-like nano BaCO3 as well as nano-fibrillar aluminum hydroxide measuring 1-10 nm in diameter and 50-300 nm in length, using liquid-liquid, gas-liquid and gas-liquid-solid reactant systems. The advantage of using the HGRP technology is illustrated by comparison to conventional methods.