The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to Oc...The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration of Pinus koraiensis seedlings were measured by a LI-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil in-stantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 靘olm 2s-1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively.展开更多
Pot experiments were conducted to evaluate the effect of water management,namely continuous flooding(CF),intermittent flooding(IF)and non-flooding(NF),on Cd phytoavailaility in three paddy soils that differed in p H a...Pot experiments were conducted to evaluate the effect of water management,namely continuous flooding(CF),intermittent flooding(IF)and non-flooding(NF),on Cd phytoavailaility in three paddy soils that differed in p H and in Cd concentrations.Diffusive gradients in thin films(DGT)technique was employed to monitor soil labile Cd and Fe concentrations simultaneously at three growth stages(tillering,heading and mature stage)of rice.The Cd phytoavailability were generally in the order of NF>IF>CF,and higher rice Cd(over permitted level,0.2 mg/kg)were only found in neutral and acidic soils under NF conditions.DGT measured soil labile Cd rather than total Cd was the most reliable predictor for Cd accumulation in rice.CF enhanced the formation of root plaques,which related to oxidation of large quantities of available Fe on root surfaces due to the O2 secretion of rice root.The Cd concentration in root plaques shared the same trend with DGT-Cd.Generally,root plaques would inhibit Cd uptake by rice under CF conditions,while under IF and NF conditions,root plaques act as a temporarily store of Cd,and soil labile Cd is the key factor that controls the transfer of Cd from soil to rice.The results of principle component analysis revealed that water management had the greatest effect on soil Cd lability and rice Cd in acidic soil.Thus,it is important to consider the availability of Cd and soil p H when assessing current agricultural practices of contaminated soil in China.展开更多
文摘The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration of Pinus koraiensis seedlings were measured by a LI-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil in-stantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 靘olm 2s-1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively.
基金supported by the National Natural Science Foundation of China(Nos.41601533 and U1401234)the Guangdong Natural Science Foundation(No.2017A030313241)
文摘Pot experiments were conducted to evaluate the effect of water management,namely continuous flooding(CF),intermittent flooding(IF)and non-flooding(NF),on Cd phytoavailaility in three paddy soils that differed in p H and in Cd concentrations.Diffusive gradients in thin films(DGT)technique was employed to monitor soil labile Cd and Fe concentrations simultaneously at three growth stages(tillering,heading and mature stage)of rice.The Cd phytoavailability were generally in the order of NF>IF>CF,and higher rice Cd(over permitted level,0.2 mg/kg)were only found in neutral and acidic soils under NF conditions.DGT measured soil labile Cd rather than total Cd was the most reliable predictor for Cd accumulation in rice.CF enhanced the formation of root plaques,which related to oxidation of large quantities of available Fe on root surfaces due to the O2 secretion of rice root.The Cd concentration in root plaques shared the same trend with DGT-Cd.Generally,root plaques would inhibit Cd uptake by rice under CF conditions,while under IF and NF conditions,root plaques act as a temporarily store of Cd,and soil labile Cd is the key factor that controls the transfer of Cd from soil to rice.The results of principle component analysis revealed that water management had the greatest effect on soil Cd lability and rice Cd in acidic soil.Thus,it is important to consider the availability of Cd and soil p H when assessing current agricultural practices of contaminated soil in China.