Above-and belowground biomass allocation not only influences growth of individual plants,but also influences vegetation structures and functions,and consequently impacts soil carbon input as well as terrestrial ecosys...Above-and belowground biomass allocation not only influences growth of individual plants,but also influences vegetation structures and functions,and consequently impacts soil carbon input as well as terrestrial ecosystem carbon cycling.However,due to sampling difficulties,a considerable amount of uncertainty remains about the root:shoot ratio(R/S),a key parameter for models of terrestrial ecosystem carbon cycling.We investigated biomass allocation patterns across a broad spatial scale.We collected data on individual plant biomass and systematically sampled along a transect across the temperate grasslands in Inner Mongolia as well as in the alpine grasslands on the Tibetan Plateau.Our results indicated that the median of R/S for herbaceous species was 0.78 in China's grasslands as a whole.R/S was significantly higher in temperate grasslands than in alpine grasslands(0.84 vs.0.65).The slope of the allometric relationship between above-and belowground biomass was steeper for temperate grasslands than for alpine.Our results did not support the hypothesis that aboveground biomass scales isometrically with belowground biomass.The R/S in China's grasslands was not significantly correlated with mean annual temperature(MAT) or mean annual precipitation(MAP).Moreover,comparisons of our results with previous findings indicated a large difference between R/S data from individual plants and communities.This might be mainly caused by the underestimation of R/S at the individual level as a result of an inevitable loss of fine roots and the overestimation of R/S in community-level surveys due to grazing and difficulties in identifying dead roots.Our findings suggest that root biomass in grasslands tended to have been overestimated in previous reports of R/S.展开更多
Plant hormones regulate many aspects of plant growth and development. Both auxin and cytokinin have been known for a long time to act either synergistically or antagonistically to control several significant developme...Plant hormones regulate many aspects of plant growth and development. Both auxin and cytokinin have been known for a long time to act either synergistically or antagonistically to control several significant developmental processes, such as the formation and maintenance of meristem. Over the past few years, exciting progress has been made to reveal the molecular mechanisms underlying the auxin-cytokinin action and interaction. In this review, we shall briefly discuss the major progress made in auxin and cytokinin biosynthesis, auxin transport, and auxin and cytokinin signaling. The frameworks for the complicated interaction of these two hormones in the control of shoot apical meristem and root apical meristem formation as well as their roles in in vitro organ regeneration are the major focus of this review.展开更多
Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocati...Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age(42-59 years old) and growing under the same climate in northeastern China.The forests were an aspen-birch forest,a hardwood forest,a Korean pine plantation,a Dahurian larch plantation,a mixed deciduous forest,and a Mongolian oak forest.There were no significant differences in the C densities of ecosystem components(except for detritus) although the six forests had varying vegetation compositions and site conditions.However,the differences were significant when the C pools were normalized against stand basal area.The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests.The C densities of vegetation,detritus,and soil ranged from 86.3-122.7 tC hm-2,6.5-10.5 tC hm-2,and 93.7-220.1 tC hm-2,respectively,which accounted for 39.7% ± 7.1%(mean ± SD),3.3% ± 1.1%,and 57.0% ± 7.9% of the total C densities,respectively.The overstory C pool accounted for 】 99% of the total vegetation C pool.The foliage biomass,small root(diameter 【 5mm) biomass,root-shoot ratio,and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2,0.95-3.24 tC hm-2,22.0%-28.3%,and 34.5%-122.2%,respectively.The Korean pine plantation had the lowest foliage production efficiency(total biomass/foliage biomass:22.6 g g-1) among the six forests,while the Dahurian larch plantation had the highest small root production efficiency(total biomass/small root biomass:124.7 g g-1).The small root C density decreased with soil depth for all forests except for the Mongolian oak forest,in which the small roots tended to be vertically distributed downwards.The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests.The variability of C allocation patterns in a specific fore展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 30870381)the Key Project of Scientific and Technical Supporting Programs Funded by the Ministry of Science & Technology of China (Grant No. 2007BAC06B01)
文摘Above-and belowground biomass allocation not only influences growth of individual plants,but also influences vegetation structures and functions,and consequently impacts soil carbon input as well as terrestrial ecosystem carbon cycling.However,due to sampling difficulties,a considerable amount of uncertainty remains about the root:shoot ratio(R/S),a key parameter for models of terrestrial ecosystem carbon cycling.We investigated biomass allocation patterns across a broad spatial scale.We collected data on individual plant biomass and systematically sampled along a transect across the temperate grasslands in Inner Mongolia as well as in the alpine grasslands on the Tibetan Plateau.Our results indicated that the median of R/S for herbaceous species was 0.78 in China's grasslands as a whole.R/S was significantly higher in temperate grasslands than in alpine grasslands(0.84 vs.0.65).The slope of the allometric relationship between above-and belowground biomass was steeper for temperate grasslands than for alpine.Our results did not support the hypothesis that aboveground biomass scales isometrically with belowground biomass.The R/S in China's grasslands was not significantly correlated with mean annual temperature(MAT) or mean annual precipitation(MAP).Moreover,comparisons of our results with previous findings indicated a large difference between R/S data from individual plants and communities.This might be mainly caused by the underestimation of R/S at the individual level as a result of an inevitable loss of fine roots and the overestimation of R/S in community-level surveys due to grazing and difficulties in identifying dead roots.Our findings suggest that root biomass in grasslands tended to have been overestimated in previous reports of R/S.
文摘Plant hormones regulate many aspects of plant growth and development. Both auxin and cytokinin have been known for a long time to act either synergistically or antagonistically to control several significant developmental processes, such as the formation and maintenance of meristem. Over the past few years, exciting progress has been made to reveal the molecular mechanisms underlying the auxin-cytokinin action and interaction. In this review, we shall briefly discuss the major progress made in auxin and cytokinin biosynthesis, auxin transport, and auxin and cytokinin signaling. The frameworks for the complicated interaction of these two hormones in the control of shoot apical meristem and root apical meristem formation as well as their roles in in vitro organ regeneration are the major focus of this review.
基金supported by the grants from the National Natural Science Foundation of China (Grant No.30625010)the Special Research Program for Public-welfare Forestry (Grant No.200804001)the Ministry of Science and Technology of China (Grant No.2006BAD03A0703)
文摘Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age(42-59 years old) and growing under the same climate in northeastern China.The forests were an aspen-birch forest,a hardwood forest,a Korean pine plantation,a Dahurian larch plantation,a mixed deciduous forest,and a Mongolian oak forest.There were no significant differences in the C densities of ecosystem components(except for detritus) although the six forests had varying vegetation compositions and site conditions.However,the differences were significant when the C pools were normalized against stand basal area.The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests.The C densities of vegetation,detritus,and soil ranged from 86.3-122.7 tC hm-2,6.5-10.5 tC hm-2,and 93.7-220.1 tC hm-2,respectively,which accounted for 39.7% ± 7.1%(mean ± SD),3.3% ± 1.1%,and 57.0% ± 7.9% of the total C densities,respectively.The overstory C pool accounted for 】 99% of the total vegetation C pool.The foliage biomass,small root(diameter 【 5mm) biomass,root-shoot ratio,and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2,0.95-3.24 tC hm-2,22.0%-28.3%,and 34.5%-122.2%,respectively.The Korean pine plantation had the lowest foliage production efficiency(total biomass/foliage biomass:22.6 g g-1) among the six forests,while the Dahurian larch plantation had the highest small root production efficiency(total biomass/small root biomass:124.7 g g-1).The small root C density decreased with soil depth for all forests except for the Mongolian oak forest,in which the small roots tended to be vertically distributed downwards.The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests.The variability of C allocation patterns in a specific fore