TWIK-related potassium channels (TREK) belong to a subfamily of the two-pore domain potassium channels family with three members, TREK1, TREK2 and TWIK-related arachidonic acid-activated potassium channels. The two-po...TWIK-related potassium channels (TREK) belong to a subfamily of the two-pore domain potassium channels family with three members, TREK1, TREK2 and TWIK-related arachidonic acid-activated potassium channels. The two-pore domain potassium channels is the last big family of channels being discovered, therefore it is not surprising that most of the information we know about TREK channels predominantly comes from the study of heterologously expressed channels. Notw让hstanding, in this review we pay special attention to the limited amount of information available on native TREK-like channels and real neurons in relation to neuroprotection. Mainly we focus on the role of free fatty acids, lysophospholipids and other neuroprotective agents like riluzole in the modulation of TREK channels, emphasizing on how important this modulation may be for the development of new therapies against neuropathic pain, depression, schizophrenia, epilepsy, ischemia and cardiac complications.展开更多
AIM: To investigate the expression of TWIK-related arachidonic acid-stimulated K+ channel(TRAAK) in retinal degeneration mice(rd1) and further evaluate how TRAAK affect photoreceptor cell apoptosis.METHODS: The rd1 mi...AIM: To investigate the expression of TWIK-related arachidonic acid-stimulated K+ channel(TRAAK) in retinal degeneration mice(rd1) and further evaluate how TRAAK affect photoreceptor cell apoptosis.METHODS: The rd1 mice were distributed into blank(no treatment), control(1.4% DMSO, intraperitoneal injection) and riluzole groups(4 mg/kg·d, intraperitoneal injection) from postnatal 7 d to 10, 14 and 18 d;C57 group(no treatment), as age-matched wild-type control. The thickness of the outer nuclear layer(ONL) of retina was detected by paraffin section hematoxylin and eosin staining. The expression of TRAAK and the apoptosis of the ONL cells were detected by immunostaining, Western blotting, and real-time polymerase chain reaction. RESULTS: The channel agonist riluzole activated TRAAK and delayed the apoptosis of photoreceptor cells in ONL layer of rd1 mice. Both at mRNA and protein levels, after riluzole treatment, TRAAK expression was significantly upregulated, when compared with the control and blank group. Then we detected a series of apoptosis related mRNA and protein. The anti-apoptotic factor Bcl-2 downregulated and the pro-apoptotic factors Bax and cleaved-caspase-3 upregulated significantly. CONCLUSION: Riluzole elevates the expression of TRAAK and inhibits the development of apoptosis. Activation of TRAAK may have some potential effects to put off photoreceptor apoptosis.展开更多
基金supported by grants to JAL from the Spanish Government:Secretaría de Estado de Investigación,Desarrollo e Innovación(MINECO,BFU2014-58999-P),Galician Government:Consellería de Cultura,Educación e Ordenación Universitaria,Xunta de Galicia(GPC2015/022)European Regional Development Fund(FP7-316265-BIOCAPS)supported with Fondo Europeo de Desarrollo Regional Funds
文摘TWIK-related potassium channels (TREK) belong to a subfamily of the two-pore domain potassium channels family with three members, TREK1, TREK2 and TWIK-related arachidonic acid-activated potassium channels. The two-pore domain potassium channels is the last big family of channels being discovered, therefore it is not surprising that most of the information we know about TREK channels predominantly comes from the study of heterologously expressed channels. Notw让hstanding, in this review we pay special attention to the limited amount of information available on native TREK-like channels and real neurons in relation to neuroprotection. Mainly we focus on the role of free fatty acids, lysophospholipids and other neuroprotective agents like riluzole in the modulation of TREK channels, emphasizing on how important this modulation may be for the development of new therapies against neuropathic pain, depression, schizophrenia, epilepsy, ischemia and cardiac complications.
基金Supported by National Natural Science Foundation of China (No.81271012)
文摘AIM: To investigate the expression of TWIK-related arachidonic acid-stimulated K+ channel(TRAAK) in retinal degeneration mice(rd1) and further evaluate how TRAAK affect photoreceptor cell apoptosis.METHODS: The rd1 mice were distributed into blank(no treatment), control(1.4% DMSO, intraperitoneal injection) and riluzole groups(4 mg/kg·d, intraperitoneal injection) from postnatal 7 d to 10, 14 and 18 d;C57 group(no treatment), as age-matched wild-type control. The thickness of the outer nuclear layer(ONL) of retina was detected by paraffin section hematoxylin and eosin staining. The expression of TRAAK and the apoptosis of the ONL cells were detected by immunostaining, Western blotting, and real-time polymerase chain reaction. RESULTS: The channel agonist riluzole activated TRAAK and delayed the apoptosis of photoreceptor cells in ONL layer of rd1 mice. Both at mRNA and protein levels, after riluzole treatment, TRAAK expression was significantly upregulated, when compared with the control and blank group. Then we detected a series of apoptosis related mRNA and protein. The anti-apoptotic factor Bcl-2 downregulated and the pro-apoptotic factors Bax and cleaved-caspase-3 upregulated significantly. CONCLUSION: Riluzole elevates the expression of TRAAK and inhibits the development of apoptosis. Activation of TRAAK may have some potential effects to put off photoreceptor apoptosis.