′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion func...′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.展开更多
In order to cope with some difficulties due to the fact that the derivative of a constant is not zero with the commonly accepted Riemann-Liouville definition of fractional derivative, one (Jumarie) has proposed rece...In order to cope with some difficulties due to the fact that the derivative of a constant is not zero with the commonly accepted Riemann-Liouville definition of fractional derivative, one (Jumarie) has proposed recently an alternative referred to as (local) modified Riemann-Liouville definition, which directly, provides a Taylor's series of fractional order for non differentiable functions. We examine here in which way this calculus can be used as a framework for a differential geometry of fractional or- der. One will examine successively implicit function, manifold, length of curves, radius of curvature, Christoffel coefficients, velocity, acceleration. One outlines the application of this framework to La- grange optimization in mechanics, and one concludes with some considerations on a possible fractional extension of the pseudo-geodesic of thespecial relativity and of the Lorentz transformation.展开更多
Chebfun is a Matlab-based software system that overloads Matlab's discrete operations for vectors and matrices to analogous continuous operations for functions and operators.We begin by describing Chebfun's fa...Chebfun is a Matlab-based software system that overloads Matlab's discrete operations for vectors and matrices to analogous continuous operations for functions and operators.We begin by describing Chebfun's fast capabilities for Clenshaw-Curtis and also Gauss-Legendre,-Jacobi,-Hermite,and-Laguerre quadrature,based on algorithms of Waldvogel and Glaser,Liu and Rokhlin.Then we consider how such methods can be applied to quadrature problems including 2D integrals over rectangles,fractional derivatives and integrals,functions defined on unbounded intervals,and the fast computation of weights for barycentric interpolation.展开更多
The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicat...The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.展开更多
Fractional integral of continuous functions has been discussed in the present paper. If the order of Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional integral of any contin...Fractional integral of continuous functions has been discussed in the present paper. If the order of Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional integral of any continuous functions on a closed interval is no more than 2 - v.展开更多
This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals a...This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.展开更多
文摘′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.
基金Supported by the Key Project of Universities Natural Science Research of Anhui Province (KJ2021A0638, KJ2020A0509)the National Natural Science Foundation of China (61573034, 61327807, 11705003)the National Natural Science Foundation of Anhui Province (gxbjZD2021063)。
文摘In order to cope with some difficulties due to the fact that the derivative of a constant is not zero with the commonly accepted Riemann-Liouville definition of fractional derivative, one (Jumarie) has proposed recently an alternative referred to as (local) modified Riemann-Liouville definition, which directly, provides a Taylor's series of fractional order for non differentiable functions. We examine here in which way this calculus can be used as a framework for a differential geometry of fractional or- der. One will examine successively implicit function, manifold, length of curves, radius of curvature, Christoffel coefficients, velocity, acceleration. One outlines the application of this framework to La- grange optimization in mechanics, and one concludes with some considerations on a possible fractional extension of the pseudo-geodesic of thespecial relativity and of the Lorentz transformation.
基金supported by the MathWorks,Inc.,King Abdullah University of Science and Technology (KAUST) (Award No. KUK-C1-013-04)the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC (Grant Agreement No. 291068)
文摘Chebfun is a Matlab-based software system that overloads Matlab's discrete operations for vectors and matrices to analogous continuous operations for functions and operators.We begin by describing Chebfun's fast capabilities for Clenshaw-Curtis and also Gauss-Legendre,-Jacobi,-Hermite,and-Laguerre quadrature,based on algorithms of Waldvogel and Glaser,Liu and Rokhlin.Then we consider how such methods can be applied to quadrature problems including 2D integrals over rectangles,fractional derivatives and integrals,functions defined on unbounded intervals,and the fast computation of weights for barycentric interpolation.
文摘The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.
文摘Fractional integral of continuous functions has been discussed in the present paper. If the order of Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional integral of any continuous functions on a closed interval is no more than 2 - v.
文摘This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.