This article studies the inhomogeneous Moisil-Theodorsco system in the space R3, gives the integral expression of its solution, proves the Holder continuity of the solution. Moreover the author studies the Riemann-Hil...This article studies the inhomogeneous Moisil-Theodorsco system in the space R3, gives the integral expression of its solution, proves the Holder continuity of the solution. Moreover the author studies the Riemann-Hilbert boundary value problem for the Moisil-Theodorsco system in a cylindrical domain of R3, and gives the solvability conditions and the integral expressions of solutions. The Holder continuity of the solutions is proved.展开更多
We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it ca...We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann- Hilbert problem formulated in the plane of the complex spectral parameter ξ. This problem has explicit (x, t) dependence, and it has jumps across {ξ∈C|Imξ^4 = 0}. The relevant jump matrices are explicitely given in terms of the spectral functions {a(ξ), b(ξ)}, {A(ξ), B(ξ)}, and {A(ξ), B(ξ)}, which in turn are defined in terms of the initial data q0(x) = q(x, 0), the bound- ary data g0(t)= q(0, t), g1(t) = qx(0, t), and another boundary values f0(t) = q(L, t), f1(t) = qx(L, t). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.展开更多
In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value prob...In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value problem on the positive real axis, we get the Riemann-Hilbert characterization of the main Bessel polynomials with varying large negative parameters.展开更多
In this paper, the Fokas unified method is used to analyze the initial-boundary value problem of a complex Sharma–Tasso–Olver(c STO) equation on the half line. We show that the solution can be expressed in terms of ...In this paper, the Fokas unified method is used to analyze the initial-boundary value problem of a complex Sharma–Tasso–Olver(c STO) equation on the half line. We show that the solution can be expressed in terms of the solution of a Riemann–Hilbert problem. The relevant jump matrices are explicitly given in terms of the matrix-value spectral functions spectral functions {a(λ), b(λ)} and {A(λ), B(λ)}, which depending on initial data u_0(x) = u(x, 0) and boundary data g_0(y) = u(0, y), g_1(y) = ux(0, y), g_2(y) = u_(xx)(0, y). These spectral functions are not independent, they satisfy a global relation.展开更多
Using the Fokas unified method, we consider the initial boundary value problem for the Fokas-Lenells equation on the finite interval. We present that the Neumann boundary data can be explicitly expressed by Dirichlet ...Using the Fokas unified method, we consider the initial boundary value problem for the Fokas-Lenells equation on the finite interval. We present that the Neumann boundary data can be explicitly expressed by Dirichlet boundary conditions prescribed, and extend the idea of the linearizable boundary conditions for equations on the half line to Pokas-Lenells equation on the finite interval.展开更多
基金Natural Science Foundation of China(11362018,11261045,11261401)Pecialized Research Fund for the Doctoral Program of Higher Education of China(20116401110002)Science and Technology Research Project of Ningxia High School(NGY2015182)
基金Supported partially by the Key Project Foundation of the Education Department of Sichuan Province
文摘This article studies the inhomogeneous Moisil-Theodorsco system in the space R3, gives the integral expression of its solution, proves the Holder continuity of the solution. Moreover the author studies the Riemann-Hilbert boundary value problem for the Moisil-Theodorsco system in a cylindrical domain of R3, and gives the solvability conditions and the integral expressions of solutions. The Holder continuity of the solutions is proved.
基金supported by grants from the National Science Foundation of China (10971031 11271079+2 种基金 11075055)Doctoral Programs Foundation of the Ministry of Education of Chinathe Shanghai Shuguang Tracking Project (08GG01)
文摘We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann- Hilbert problem formulated in the plane of the complex spectral parameter ξ. This problem has explicit (x, t) dependence, and it has jumps across {ξ∈C|Imξ^4 = 0}. The relevant jump matrices are explicitely given in terms of the spectral functions {a(ξ), b(ξ)}, {A(ξ), B(ξ)}, and {A(ξ), B(ξ)}, which in turn are defined in terms of the initial data q0(x) = q(x, 0), the bound- ary data g0(t)= q(0, t), g1(t) = qx(0, t), and another boundary values f0(t) = q(L, t), f1(t) = qx(L, t). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.
基金supported by NNSF of China(#11171260)RFDP of Higher Education of China(#20100141110054)
文摘In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value problem on the positive real axis, we get the Riemann-Hilbert characterization of the main Bessel polynomials with varying large negative parameters.
基金Supported by National Natural Science Foundation of China under Grant Nos.11271008 and 61072147
文摘In this paper, the Fokas unified method is used to analyze the initial-boundary value problem of a complex Sharma–Tasso–Olver(c STO) equation on the half line. We show that the solution can be expressed in terms of the solution of a Riemann–Hilbert problem. The relevant jump matrices are explicitly given in terms of the matrix-value spectral functions spectral functions {a(λ), b(λ)} and {A(λ), B(λ)}, which depending on initial data u_0(x) = u(x, 0) and boundary data g_0(y) = u(0, y), g_1(y) = ux(0, y), g_2(y) = u_(xx)(0, y). These spectral functions are not independent, they satisfy a global relation.
基金supported by grants from the National Natural Science Foundation of China(11271079,11626090)
文摘Using the Fokas unified method, we consider the initial boundary value problem for the Fokas-Lenells equation on the finite interval. We present that the Neumann boundary data can be explicitly expressed by Dirichlet boundary conditions prescribed, and extend the idea of the linearizable boundary conditions for equations on the half line to Pokas-Lenells equation on the finite interval.