期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于转录组分析大肠杆菌响应亚碲酸盐的机制 被引量:1
1
作者 胡苏姝 彭万里 +2 位作者 林双君 邓子新 梁如冰 《微生物学报》 CAS CSCD 北大核心 2022年第7期2702-2718,共17页
亚碲酸盐对绝大多数微生物有高毒性,可用作抗菌剂;但其具体毒性机制仍不清楚。【目的】理解亚碲酸盐的毒性机制,揭示亚碲酸盐处理导致的代谢变化。【方法】本研究通过比较转录组分析与挖掘差异转录基因,探讨了大肠杆菌响应亚碲酸盐胁迫... 亚碲酸盐对绝大多数微生物有高毒性,可用作抗菌剂;但其具体毒性机制仍不清楚。【目的】理解亚碲酸盐的毒性机制,揭示亚碲酸盐处理导致的代谢变化。【方法】本研究通过比较转录组分析与挖掘差异转录基因,探讨了大肠杆菌响应亚碲酸盐胁迫的机制。【结果】Escherichia coli MG1655在10μg/mL亚碲酸盐处理1 h后,比较和分析了亚碲酸盐处理组与对照组的转录水平差异,发现细胞呈现一种明显的适应性变化,许多参与重要代谢途径的基因转录水平改变。其中,与核糖体代谢和鞭毛组装相关基因的转录水平发生显著变化,表明这两条途径很可能是亚碲酸盐作用的主要途径。与细胞能动性、金属离子代谢、细胞膜功能相关的基因的转录水平也发生了明显变化,可能是由于其参与了抵抗亚碲酸盐毒性的细胞代谢调节和损伤修复。【结论】本项工作有助于推动亚碲酸盐毒性机理的研究,促进亚碲酸盐的临床应用。 展开更多
关键词 亚碲酸盐 比较转录组 差异转录基因 核糖体代谢 鞭毛组装
原文传递
Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence
2
作者 Zhixiu Yang Qiang Guo +9 位作者 Simon Goto Yuling Chen Ningning Li Kaige Yan Yixiao Zhang Akira Muto Haiteng Deng Hyouta Himeno Jianlin Lei Ning Gao 《Protein & Cell》 SCIE CAS CSCD 2014年第5期394-407,共14页
The in vivo assembly of ribosomal subunits is a highly complex process, with a tight coordination between protein assembly and rRNA maturation events, such as folding and processing of rRNA precursors, as well as modi... The in vivo assembly of ribosomal subunits is a highly complex process, with a tight coordination between protein assembly and rRNA maturation events, such as folding and processing of rRNA precursors, as well as modifications of selected bases. In the cell, a large number of factors are required to ensure the efficiency and fidelity of subunit production. Here we characterize the immature 30S subunits accumulated in a factor-null Escherichia coil strain (ArsgAArbfA). The immature 30S subunits isolated with varying salt concentrations in the buffer system show interesting differences on both protein composition and structure. Specifically, inter- mediates derived under the two contrasting salt condi- tions (high and low) likely reflect two distinctive assembly stages, the relatively early and late stages of the 3' domain assembly, respectively. Detailed structural analysis demonstrates a mechanistic coupling between the maturation of the 5' end of the 17S rRNA and the assembly of the 30S head domain, and attributes a unique role of S5 in coordinating these two events. Furthermore, our structural results likely reveal thelocation of the unprocessed terminal sequences of the 17S rRNA, and suggest that the maturation events of the 17S rRNA could be employed as quality control mech- anisms on subunit production and protein translation. 展开更多
关键词 RsgA RbfA ribosome assembly cryo-EM quantitative mass spectrometry
原文传递
Cryo-EM structure of an early precursor of large ribosomal subunit reveals a half-assembled intermediate
3
作者 Dejian Zhou Xing Zhu +3 位作者 Sanduo Zheng Dan Tan Meng-Qiu Dong Keqiong Ye 《Protein & Cell》 SCIE CAS CSCD 2019年第2期120-130,共11页
Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates.It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established.Here,we re... Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates.It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established.Here,we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 A resolution,revealing a half-assembled subunit.DomainsⅠ,ⅡandⅣof 25S/5.8S rRNA pack tightly into a native-like substructure,but domains Ⅲ,ⅣandⅤare not assembled.The structure contains 12 assembly factors and 19 ribosomal proteins,many of which are required for early processing of large subunit rRNA.The Brx1-Ebp2 complex would interfere with the assembly of domains Ⅳ and Ⅴ.Rpf1,Mak16,Nsa1 and Rrp1 form a cluster that consolidates the joining of domainsⅠandⅡ.Our structure reveals a key intermediate on the path to establishing the global architecture of 60S subunits. 展开更多
关键词 ribosome assembly CRYO-EM pre-60S ribosome NUCLEOLAR
原文传递
23S rRNA甲基转移酶RrmJ促进大肠杆菌50S亚基后期组装
4
作者 汪伟 李婉秋 高宁 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2017年第7期712-718,共7页
核糖体是所有细胞中负责蛋白质合成的分子机器。它自身在细胞内的组装成熟过程受到严密调控,需要诸多组装因子的参与。Rrm J是原核生物中一类保守的甲基转移酶,能够甲基化修饰核糖体上肽基转移酶中心(peptidyl transferase center,PTC)... 核糖体是所有细胞中负责蛋白质合成的分子机器。它自身在细胞内的组装成熟过程受到严密调控,需要诸多组装因子的参与。Rrm J是原核生物中一类保守的甲基转移酶,能够甲基化修饰核糖体上肽基转移酶中心(peptidyl transferase center,PTC)内A环的U2552位点。敲除rrm J基因的大肠杆菌表现出显著的生长缺陷及50S亚基组装前体的累积,因而Rrm J在50S亚基组装中具有重要作用。本研究对细菌生长实验与核糖体图谱分析表明,回补表达Rrm J的质粒对于Δrrm J菌株生长缺陷有显著改善,50S前体累积现象也得到有效缓解。通过共沉淀实验证明,Rrm J与Δrrm J菌株中提取的50S前体结合能力显著强于缺失型或野生型菌株中纯化的成熟50S;当加入S-腺苷甲硫氨酸时,该酶与50S前体结合能力显著下降。冷冻电镜三维重构数据进一步阐明,缺失型菌株50S前体主要停滞在组装晚期两个PTC区域成熟程度不同的特定时段。综合上述结果表明,U2552位点的修饰发生在50S亚基组装晚期特定阶段,这一事件不仅会加速A环的RNA螺旋折叠,另有可能促进附近PTC区域结构成熟。 展开更多
关键词 RrmJ U2552甲基化修饰 核糖体组装 RNA修饰
下载PDF
依赖于核糖体的NTP酶YchF和YihA的结合特性及酶活性研究(英文)
5
作者 孔梦媛 闫凯歌 +1 位作者 马成英 高宁 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2016年第6期570-578,共9页
P-环NTP酶(GTP酶和ATP酶)普遍存在于真核生物和原核生物中,参与调节不同的细胞进程.Ych F和Yih A是细菌中两种高度保守的NTP酶,但其生理功能仍然不清楚.之前的研究表明这两种NTP酶可以与核糖体或者核糖体亚基结合.我们检测了在不同核苷... P-环NTP酶(GTP酶和ATP酶)普遍存在于真核生物和原核生物中,参与调节不同的细胞进程.Ych F和Yih A是细菌中两种高度保守的NTP酶,但其生理功能仍然不清楚.之前的研究表明这两种NTP酶可以与核糖体或者核糖体亚基结合.我们检测了在不同核苷酸存在的情况下,大肠杆菌Y ch F和Yih A蛋白与核糖体30S、50S、70S颗粒的结合情况,同时也探究了核糖体亚基的结合是否与N TP酶活性的激活有关.数据表明Ych F与70S结合,Yih A与50S结合.70S核糖体能同时激活Y ch F的ATP酶和GTP酶活性.然而Yih A的GTP酶活性可以分别被50S和70S激活,并且70S呈现了8.8倍的激活效应.这些数据为进一步研究这两种保守的NTPase的生理功能奠定了基础. 展开更多
关键词 YchF YihA/YsxC ATP酶 GTP酶 核糖体组装 GTP酶激活蛋白 翻译调控
下载PDF
Protein arginine methyltransferase 3 fine-tunes the assembly/disassembly of pre-ribosomes to repress nucleolar stress by interacting with RPS2B in arabidopsis
6
作者 Runlai Hang Zhen Wang +6 位作者 Chao Yang Lilan Luo Beixin MO Xuemei Chen Jing Sun Chunyan Liu Xiaofeng Cao 《Molecular Plant》 SCIE CAS CSCD 2021年第2期223-236,共14页
Ribosome biogenesis,which takes place mainly in the nucleolus,involves coordinated expression of preribosomal RNAs(pre-rRNAs)and ribosomal proteins,pre-rRNA processing,and subunit assembly with the aid of numerous ass... Ribosome biogenesis,which takes place mainly in the nucleolus,involves coordinated expression of preribosomal RNAs(pre-rRNAs)and ribosomal proteins,pre-rRNA processing,and subunit assembly with the aid of numerous assembly factors.Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing;however,the underlying molecular mechanism remains unknown.Here,we report that AtPRMT3 interacts with Ribosomal Protein S2(RPS2),facilitating processing of the 90S/Small Subunit(SSU)processome and repressing nucleolar stress.We isolated an intragenic suppressor of atprmt3-2,which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain We further identified RPS2 as an interacting partner of AtPRMT3,and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3,showing pleiotropic developmental defects and aberrant pre-rRNA processing.RPS2B binds directly to pre-rRNAs in the nucleus,and such binding is enhanced in atprmt3-2.Consistently,multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2,which accounts for early pre-rRNA processing defects and results in nucleolar stress.Collectively,our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress. 展开更多
关键词 AtPRMT3 RPS2 ribosome assembly pre-rRNA processing 90S/SSU processome nucleolar stress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部