使用金纳米粒子为增强因子的表面增强拉曼光谱技术,通过连续小波变换将拉曼光谱信号转化到小波空间(墨西哥帽小波作为小波基)。该步骤能够减轻信号中基线变化及随机噪音的影响并找到峰位置和最佳小波尺度系数。依据小波空间中的信息,对...使用金纳米粒子为增强因子的表面增强拉曼光谱技术,通过连续小波变换将拉曼光谱信号转化到小波空间(墨西哥帽小波作为小波基)。该步骤能够减轻信号中基线变化及随机噪音的影响并找到峰位置和最佳小波尺度系数。依据小波空间中的信息,对混合物光谱及标准谱光谱进行反向搜索得到反向搜索匹配系数(Reverse match quality,RMQ),作为判断混合物中目标成分是否存在的依据。该算法可对混合物中的目标物质进行准确定性,并已成功应用于多种食品中色素鉴定。食品中色素的检出率达到99%,且结果稳健,其效果明显优于传统的命中质量系数法(Hit quality index,HQI)。这证实了小波空间反向搜索方法是一种快速而准确的拉曼光谱定性算法。展开更多
In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking....In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators.展开更多
Objective: To investigate the network pharmacology of Shexiang Baoxin pill(SBP) and systematically analyze the mechanisms of SBP.Methods: In this study, we excavated all the targets of 26 constituents of SBP which wer...Objective: To investigate the network pharmacology of Shexiang Baoxin pill(SBP) and systematically analyze the mechanisms of SBP.Methods: In this study, we excavated all the targets of 26 constituents of SBP which were identified in rat plasma though literature mining and target calculation(reverse docking and similarity search) and analyzed the multiple pharmacology actions of SBP comprehensively through a network pharmacology approach.Results: In the end, a total of 330 Homo sapiens targets were identified for 26 blood constituents of SBP.Moreover, the pathway enrichment analysis found that these targets mapped into 171 KEGG pathways and 31 of which were more enriched.Among these identified pathways, 3 pathways were selected for analyzing the mechanisms of SBP for treating coronary heart disease.Conclusion: This study systematically illustrated the mechanisms of the SBP by analyzing the corresponding "drug-target-pathway-disease" interaction network.展开更多
文摘使用金纳米粒子为增强因子的表面增强拉曼光谱技术,通过连续小波变换将拉曼光谱信号转化到小波空间(墨西哥帽小波作为小波基)。该步骤能够减轻信号中基线变化及随机噪音的影响并找到峰位置和最佳小波尺度系数。依据小波空间中的信息,对混合物光谱及标准谱光谱进行反向搜索得到反向搜索匹配系数(Reverse match quality,RMQ),作为判断混合物中目标成分是否存在的依据。该算法可对混合物中的目标物质进行准确定性,并已成功应用于多种食品中色素鉴定。食品中色素的检出率达到99%,且结果稳健,其效果明显优于传统的命中质量系数法(Hit quality index,HQI)。这证实了小波空间反向搜索方法是一种快速而准确的拉曼光谱定性算法。
基金supported by the National Natural Science Foundation of China under Grant No.62001199Fujian Province Nature Science Foundation under Grant No.2023J01925.
文摘In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators.
基金supported by the Professor of Chang Jiang Scholars Program,NSFC(81520108030,21472238)Shanghai Engineering Research Center for the Preparation of Bioactive Natural Products(16DZ2280200)+2 种基金the Scientific Foundation of Shanghai China(13401900103,13401900101)the National Key Research and Development Program of China(2017YFC1700200)and the Project of Qinghai Science and Technology Department(2016‑ZJ‑Y01,2018‑ZJ‑948Q)
文摘Objective: To investigate the network pharmacology of Shexiang Baoxin pill(SBP) and systematically analyze the mechanisms of SBP.Methods: In this study, we excavated all the targets of 26 constituents of SBP which were identified in rat plasma though literature mining and target calculation(reverse docking and similarity search) and analyzed the multiple pharmacology actions of SBP comprehensively through a network pharmacology approach.Results: In the end, a total of 330 Homo sapiens targets were identified for 26 blood constituents of SBP.Moreover, the pathway enrichment analysis found that these targets mapped into 171 KEGG pathways and 31 of which were more enriched.Among these identified pathways, 3 pathways were selected for analyzing the mechanisms of SBP for treating coronary heart disease.Conclusion: This study systematically illustrated the mechanisms of the SBP by analyzing the corresponding "drug-target-pathway-disease" interaction network.