Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils...Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.展开更多
Canola (Brassica napus L.) is one of the most important oilseed crops in the world and its seed yield and quality are significantly affected by drought stress. As an innate and adaptive response to water deficit, la...Canola (Brassica napus L.) is one of the most important oilseed crops in the world and its seed yield and quality are significantly affected by drought stress. As an innate and adaptive response to water deficit, land plants avoid potential damage by rapid biosynthesis of the phytohormone abscisic acid (ABA), which triggers stomatal closure to reduce transpirational water loss. The ABA-mediated stomatal response is a dosage-dependent process; thus, one genetic engineering approach for achieving drought avoidance could be to sensitize the guard cell's responsiveness to this hormone. Recent genetic studies have pinpointed protein farnesyltransferase as a key negative regulator controlling ABA sensitivity in the guard cells. We have previously shown that down-regulation of the gene encoding Arabidopsis β-subunit of farnesyltransferase (ERA1) enhances the plant's sensitivity to ABA and drought tolerance. Although the β-subunit of famesyltransferase (AtFTA) is also implicated in ABA sensing, the effectiveness of using such a gene target for improving drought tolerance in a crop plant has not been validated. Here, we report the identification and characterization of the promoter of Arabidopsis hydroxypyruvate reductase (AtHPR1), which expresses specifically in the shoot and not in non-photosynthetic tissues such as root. The promoter region of AtHPR1 contains the core motif of the well characterized dehydration-responsive cis-acting element and we have confirmed thatAtHPR1 expression is inducible by drought stress. Conditional and specific down-regulation of FTA in canola using the AtHPR1 promoter driving an RNAi construct resulted in yield protection against drought stress in the field. Using this molecular strategy, we have made significant progress in engineering drought tolerance in this important crop species.展开更多
A pretreatment process for hydrogen peroxide (H2O2) was optimized to enhance the biodegradation performance of rice straw and increase biogas yield. A determination experiment was conducted under predicted optimal c...A pretreatment process for hydrogen peroxide (H2O2) was optimized to enhance the biodegradation performance of rice straw and increase biogas yield. A determination experiment was conducted under predicted optimal conditions. Optimization was implemented using response surface methodology. The effects of biodegradation and the interactive effects of pretreatment time (PT), H2O2 concentration (HC), and substrate to inoculum ratio (S/I) on methane yield were investigated. The lignin, cellulose, and hemicellulose of rice straw were significantly degraded with increasing HC. The optimal conditions for the use of pretreated rice straw in anaerobic digestion were a 6.18-d PT, 2.68% HC (w/w total solid), and 1.08 S/I; these conditions result in a methane yield of 288 mL g-1 volatile solids (VS). A determination coefficient of 95.2% was obtained, indicating that the model used to predict the anabolic digestion process has a favorable fit with the experimental parameters. The determination experiment resulted in a methane yield of 290 mL g-1 VS, 88.0% higher than that of untreated rice straw. Thus, H2O2 pretreatment of rice straw can be used to improve methane yields during biogas production.展开更多
基金The study was supported by the 948 Program of theMinistry of Agriculture of China (2003-253) the Natural Science Foundation of Hebei Province,China (300130).
文摘Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.
文摘Canola (Brassica napus L.) is one of the most important oilseed crops in the world and its seed yield and quality are significantly affected by drought stress. As an innate and adaptive response to water deficit, land plants avoid potential damage by rapid biosynthesis of the phytohormone abscisic acid (ABA), which triggers stomatal closure to reduce transpirational water loss. The ABA-mediated stomatal response is a dosage-dependent process; thus, one genetic engineering approach for achieving drought avoidance could be to sensitize the guard cell's responsiveness to this hormone. Recent genetic studies have pinpointed protein farnesyltransferase as a key negative regulator controlling ABA sensitivity in the guard cells. We have previously shown that down-regulation of the gene encoding Arabidopsis β-subunit of farnesyltransferase (ERA1) enhances the plant's sensitivity to ABA and drought tolerance. Although the β-subunit of famesyltransferase (AtFTA) is also implicated in ABA sensing, the effectiveness of using such a gene target for improving drought tolerance in a crop plant has not been validated. Here, we report the identification and characterization of the promoter of Arabidopsis hydroxypyruvate reductase (AtHPR1), which expresses specifically in the shoot and not in non-photosynthetic tissues such as root. The promoter region of AtHPR1 contains the core motif of the well characterized dehydration-responsive cis-acting element and we have confirmed thatAtHPR1 expression is inducible by drought stress. Conditional and specific down-regulation of FTA in canola using the AtHPR1 promoter driving an RNAi construct resulted in yield protection against drought stress in the field. Using this molecular strategy, we have made significant progress in engineering drought tolerance in this important crop species.
基金financially supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2011BAD15B03)the Basic Scientific Fund of Northwest A&F University of China (QM2012002)
文摘A pretreatment process for hydrogen peroxide (H2O2) was optimized to enhance the biodegradation performance of rice straw and increase biogas yield. A determination experiment was conducted under predicted optimal conditions. Optimization was implemented using response surface methodology. The effects of biodegradation and the interactive effects of pretreatment time (PT), H2O2 concentration (HC), and substrate to inoculum ratio (S/I) on methane yield were investigated. The lignin, cellulose, and hemicellulose of rice straw were significantly degraded with increasing HC. The optimal conditions for the use of pretreated rice straw in anaerobic digestion were a 6.18-d PT, 2.68% HC (w/w total solid), and 1.08 S/I; these conditions result in a methane yield of 288 mL g-1 volatile solids (VS). A determination coefficient of 95.2% was obtained, indicating that the model used to predict the anabolic digestion process has a favorable fit with the experimental parameters. The determination experiment resulted in a methane yield of 290 mL g-1 VS, 88.0% higher than that of untreated rice straw. Thus, H2O2 pretreatment of rice straw can be used to improve methane yields during biogas production.