Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most...Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading,as well as to mitigate the more serious shuttle effect of polysulfides,especially when worked at an elevated temperature.Herein,we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays(CoS2-CNA)into a nitrogen-rich 3D conductive scaffold(CTNF@CoS2-CNA)for LSBs.An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2-CNA were investigated.Besides,the strong capillarity effect and chemisorption of CTNF@CoS2-CNA to polysulfides enable high loading and efficient utilization of sulfur,thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature(55°C).Even with the ultrahigh sulfur loading of 7.19 mg cm?2,the CTNF@CoS2-CNA/S cathode still exhibits high rate capacity at 55°C.展开更多
The hot compression tests of Super304H austenitic heat resistant steel were carried out at 800-1200℃and 0.005-5 s^-1 using a Gleeble 3500 thermal-mechanical simulator,and its deformation behavior was analyzed.The res...The hot compression tests of Super304H austenitic heat resistant steel were carried out at 800-1200℃and 0.005-5 s^-1 using a Gleeble 3500 thermal-mechanical simulator,and its deformation behavior was analyzed.The results show that the flow stress of Super304H steel decreases with the decrease of strain rate and the increase of deformation temperature; the hot deformation activation energy of the steel is 485 kJ/mol.The hot deformation equation and the relationship between the peak stress and the deformation temperature and strain rate is obtained.The softening caused by deformation heating cannot be neglected when both the deformation temperature and strain rate are higher.展开更多
SmAlO3 powders were successfully synthesized through the citrate sol-gel combustion method. The phase evolution of the prepared powders were characterized using thermal gravimetric (TG) analysis, differential scanni...SmAlO3 powders were successfully synthesized through the citrate sol-gel combustion method. The phase evolution of the prepared powders were characterized using thermal gravimetric (TG) analysis, differential scanning calorimetry (DSC) analysis and Fourier transform infrared spectroscopy (FTIR). X-ray diffraction (XRD) was applied to examine the purity of the powders. The re-flective properties of SmAlO3 with changing temperatures were investigated by ultraviolet-visible near-infrared spectrophotometer (UVPC) specular reflection spectrum. The results displayed that pure SmAlO3 phase with preferable reflectivity at 1.06μm could be obtained at 900 oC for 2 h. Furthermore, the reflectivity of SmAlO3 at various temperatures from-40 to 500 oC transformed within ±0.1%, and all maintained below 1%at 1.06μm. The absorbance of SmAlO3 in the resin solution was 2.134 and the moral absorption coefficient was about 384.8 in the work. The study indicated that SmAlO3 powders may be a promising kind of heat resistant absorb-ing material for 1.06μm laser defense, which could be further applied to laser absorbing coatings with a wide range of temperatures.展开更多
Lacking a precise targeting strategy,castration-resistant prostate cancer(CRPC)is still hard to be treat effectively.Exploring treatment options that can accurately target CPRC is an important issue with urgent need.I...Lacking a precise targeting strategy,castration-resistant prostate cancer(CRPC)is still hard to be treat effectively.Exploring treatment options that can accurately target CPRC is an important issue with urgent need.In this study,a novel nanotechnologybased strategy had been developed for the precise target treatment of CRPC.By combining microwaves and photothermal therapy(PTT),this nanoplatform,cmHSP70-PL-AuNC-DOX,targets tumor tissues with outstanding precision and achieves better anti-tumor activity by simultaneously eliciting photothermal and chemotherapeutic effects.From nanotechnology,cmHSP70-modified and thermo-sensitive liposome-coated AuNC-DOX were prepared and used for CRPC-targeted photothermal ablation and chemotherapy.Doxorubicin(DOX)was selected as the chemotherapeutic agent for cytotoxicity.In terms of the curative scheme,prostate tissues were firstly pre-treated with microwaves to induce the expression of heat shock protein 70(HSP70)and its migration to the cell membrane,which was then targeted by HSP70 antibody(cmHSP70)coated on the nanoparticles to achieve accurate drug delivery.The nanoplatform then achieved precise ablation and controlled release of DOX under external near-infrared(NIR)irradiation.Through the implementation,the targeting,cell killing,and safety of this therapeutical strategy had been verified in vivo and in vitro.This work establishes an accurate,controllable,efficient,non-invasive,and safe treatment platform for targeting CRPC,provides a rational design for CRPC’s PTT,and offers new prospects for nanomedicines with great precision.展开更多
基金financial support from the National Key Research and Development Program of China(2018YFB0104201).
文摘Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading,as well as to mitigate the more serious shuttle effect of polysulfides,especially when worked at an elevated temperature.Herein,we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays(CoS2-CNA)into a nitrogen-rich 3D conductive scaffold(CTNF@CoS2-CNA)for LSBs.An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2-CNA were investigated.Besides,the strong capillarity effect and chemisorption of CTNF@CoS2-CNA to polysulfides enable high loading and efficient utilization of sulfur,thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature(55°C).Even with the ultrahigh sulfur loading of 7.19 mg cm?2,the CTNF@CoS2-CNA/S cathode still exhibits high rate capacity at 55°C.
基金supported by the Project of National Science Technology Support Plan of China(No.2007BAE51B02)
文摘The hot compression tests of Super304H austenitic heat resistant steel were carried out at 800-1200℃and 0.005-5 s^-1 using a Gleeble 3500 thermal-mechanical simulator,and its deformation behavior was analyzed.The results show that the flow stress of Super304H steel decreases with the decrease of strain rate and the increase of deformation temperature; the hot deformation activation energy of the steel is 485 kJ/mol.The hot deformation equation and the relationship between the peak stress and the deformation temperature and strain rate is obtained.The softening caused by deformation heating cannot be neglected when both the deformation temperature and strain rate are higher.
基金supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘SmAlO3 powders were successfully synthesized through the citrate sol-gel combustion method. The phase evolution of the prepared powders were characterized using thermal gravimetric (TG) analysis, differential scanning calorimetry (DSC) analysis and Fourier transform infrared spectroscopy (FTIR). X-ray diffraction (XRD) was applied to examine the purity of the powders. The re-flective properties of SmAlO3 with changing temperatures were investigated by ultraviolet-visible near-infrared spectrophotometer (UVPC) specular reflection spectrum. The results displayed that pure SmAlO3 phase with preferable reflectivity at 1.06μm could be obtained at 900 oC for 2 h. Furthermore, the reflectivity of SmAlO3 at various temperatures from-40 to 500 oC transformed within ±0.1%, and all maintained below 1%at 1.06μm. The absorbance of SmAlO3 in the resin solution was 2.134 and the moral absorption coefficient was about 384.8 in the work. The study indicated that SmAlO3 powders may be a promising kind of heat resistant absorb-ing material for 1.06μm laser defense, which could be further applied to laser absorbing coatings with a wide range of temperatures.
基金This study was supported by the National Natural Science Foundation of China(Nos.82172679 and 82104405)Zhejiang Provincial Medicine and Health Science Foundation(No:2021KY010).
文摘Lacking a precise targeting strategy,castration-resistant prostate cancer(CRPC)is still hard to be treat effectively.Exploring treatment options that can accurately target CPRC is an important issue with urgent need.In this study,a novel nanotechnologybased strategy had been developed for the precise target treatment of CRPC.By combining microwaves and photothermal therapy(PTT),this nanoplatform,cmHSP70-PL-AuNC-DOX,targets tumor tissues with outstanding precision and achieves better anti-tumor activity by simultaneously eliciting photothermal and chemotherapeutic effects.From nanotechnology,cmHSP70-modified and thermo-sensitive liposome-coated AuNC-DOX were prepared and used for CRPC-targeted photothermal ablation and chemotherapy.Doxorubicin(DOX)was selected as the chemotherapeutic agent for cytotoxicity.In terms of the curative scheme,prostate tissues were firstly pre-treated with microwaves to induce the expression of heat shock protein 70(HSP70)and its migration to the cell membrane,which was then targeted by HSP70 antibody(cmHSP70)coated on the nanoparticles to achieve accurate drug delivery.The nanoplatform then achieved precise ablation and controlled release of DOX under external near-infrared(NIR)irradiation.Through the implementation,the targeting,cell killing,and safety of this therapeutical strategy had been verified in vivo and in vitro.This work establishes an accurate,controllable,efficient,non-invasive,and safe treatment platform for targeting CRPC,provides a rational design for CRPC’s PTT,and offers new prospects for nanomedicines with great precision.