In many wireless sensor network applications, it should be considered that how to trade off the inherent conflict between energy efficient communication and desired quality of service such as real-time and reliability...In many wireless sensor network applications, it should be considered that how to trade off the inherent conflict between energy efficient communication and desired quality of service such as real-time and reliability of transportation. In this paper, a novel routing protocols named balance energy-efficient and real-time with reliable communication (BERR) for wireless sensor networks (WSNs) are proposed, which considers the joint performances of real-time, energy efficiency and reliability. In BERR, a node, which is preparing to transmit data packets to sink node, estimates the energy cost, hop count value to sink node and reliability using local information gained from neighbor nodes. BERR considers not only each sender' energy level but also that of its neighbor nodes, so that the better energy conditions a node has, the more probability it will be to be chosen as the next relay node. To enhance real-time delivery, it will choose the node with smaller hop count value to sink node as the possible relay candidate. To improve reliability, it adopts retransmission mechanism. Simulation results show that BERR has better performances in term of energy consumption, network lifetime, reliability and small transmitting delay.展开更多
基金supported by the National Natural Science Foundation of China (61104033, 61174127, 60934003)the Hebei Provincial Natural Science Fund (F2012203109, F2012203126)
文摘In many wireless sensor network applications, it should be considered that how to trade off the inherent conflict between energy efficient communication and desired quality of service such as real-time and reliability of transportation. In this paper, a novel routing protocols named balance energy-efficient and real-time with reliable communication (BERR) for wireless sensor networks (WSNs) are proposed, which considers the joint performances of real-time, energy efficiency and reliability. In BERR, a node, which is preparing to transmit data packets to sink node, estimates the energy cost, hop count value to sink node and reliability using local information gained from neighbor nodes. BERR considers not only each sender' energy level but also that of its neighbor nodes, so that the better energy conditions a node has, the more probability it will be to be chosen as the next relay node. To enhance real-time delivery, it will choose the node with smaller hop count value to sink node as the possible relay candidate. To improve reliability, it adopts retransmission mechanism. Simulation results show that BERR has better performances in term of energy consumption, network lifetime, reliability and small transmitting delay.