While low-to-moderate resolution gridded climate data are suitable for climate-impact modeling at global and ecosystems levels, spatial analyses conducted at local scales require climate data with increased spatial ac...While low-to-moderate resolution gridded climate data are suitable for climate-impact modeling at global and ecosystems levels, spatial analyses conducted at local scales require climate data with increased spatial accuracy. This is particularly true for research focused on the evaluation of adaptive forest management strategies. In this study, we developed an application, Climate AP, to generate scale-free(i.e., specific to point locations) climate data for historical(1901–2015) and future(2011–2100)years and periods. Climate AP uses the best available interpolated climate data for the reference period 1961–1990 as baseline data. It downscales the baseline data from a moderate spatial resolution to scale-free point data through dynamic local elevation adjustments. It also integrates and downscales the historical and future climate data using a delta approach. In the case of future climate data, two greenhouse gas representative concentration pathways(RCP 4.5 and 8.5) and 15 general circulation models are included to allow for the assessment of alternative climate scenarios. In addition, Climate AP generates a large number of biologically relevant climate variables derived from primary monthly variables. The effectiveness of the local downscaling was determined based on the strength of the local linear regression for the estimate of lapse rate. The accuracy of the Climate AP output was evaluated through comparisons of Climate AP output against observations from 1805 weather stations in the Asia Pacific region. The local linear regression explained 70%–80% and 0%–50% of the total variation in monthly temperatures and precipitation, respectively, in most cases. Climate AP reduced prediction error by up to27% and 60% for monthly temperature and precipitation,respectively, relative to the original baselines data. The improvements for baseline portions of historical and futurewere more substantial. Applications and limitations of the software are discussed.展开更多
基金funded by a research grant"Adaptation of Asia-Pacific Forests to Climate Change"(APFNet/2010/PPF/001)funded by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation
文摘While low-to-moderate resolution gridded climate data are suitable for climate-impact modeling at global and ecosystems levels, spatial analyses conducted at local scales require climate data with increased spatial accuracy. This is particularly true for research focused on the evaluation of adaptive forest management strategies. In this study, we developed an application, Climate AP, to generate scale-free(i.e., specific to point locations) climate data for historical(1901–2015) and future(2011–2100)years and periods. Climate AP uses the best available interpolated climate data for the reference period 1961–1990 as baseline data. It downscales the baseline data from a moderate spatial resolution to scale-free point data through dynamic local elevation adjustments. It also integrates and downscales the historical and future climate data using a delta approach. In the case of future climate data, two greenhouse gas representative concentration pathways(RCP 4.5 and 8.5) and 15 general circulation models are included to allow for the assessment of alternative climate scenarios. In addition, Climate AP generates a large number of biologically relevant climate variables derived from primary monthly variables. The effectiveness of the local downscaling was determined based on the strength of the local linear regression for the estimate of lapse rate. The accuracy of the Climate AP output was evaluated through comparisons of Climate AP output against observations from 1805 weather stations in the Asia Pacific region. The local linear regression explained 70%–80% and 0%–50% of the total variation in monthly temperatures and precipitation, respectively, in most cases. Climate AP reduced prediction error by up to27% and 60% for monthly temperature and precipitation,respectively, relative to the original baselines data. The improvements for baseline portions of historical and futurewere more substantial. Applications and limitations of the software are discussed.