针对中文电子病历中命名实体识别和实体关系抽取研究方法中存在的问题,提出了一种基于双向长短时记忆网络(bidirectional long short-term memory)与CRF(conditional random field)结合的实体识别和实体关系抽取方法。该方法首先使用词...针对中文电子病历中命名实体识别和实体关系抽取研究方法中存在的问题,提出了一种基于双向长短时记忆网络(bidirectional long short-term memory)与CRF(conditional random field)结合的实体识别和实体关系抽取方法。该方法首先使用词嵌入技术将文本转换为数值向量,作为神经网络BiLSTM的输入,再结合CRF链式结构进行序列标注,输出最大概率序列,并对识别结果知识图谱化。实验证明,该方法对中文电子病历进行实体识别和实体关系抽取时的准确率、召回率、F值有明显的提升。实验结果满足临床中系统应用需求,对帮助研究构建临床决策支持系统、个性化医疗推荐服务有引导作用。展开更多
文摘针对中文电子病历中命名实体识别和实体关系抽取研究方法中存在的问题,提出了一种基于双向长短时记忆网络(bidirectional long short-term memory)与CRF(conditional random field)结合的实体识别和实体关系抽取方法。该方法首先使用词嵌入技术将文本转换为数值向量,作为神经网络BiLSTM的输入,再结合CRF链式结构进行序列标注,输出最大概率序列,并对识别结果知识图谱化。实验证明,该方法对中文电子病历进行实体识别和实体关系抽取时的准确率、召回率、F值有明显的提升。实验结果满足临床中系统应用需求,对帮助研究构建临床决策支持系统、个性化医疗推荐服务有引导作用。