MicroRNAs (miRNAs) are endogenous -22 nucleotide noncoding RNAs that regulate the expression of complementary messenger RNAs (mRNAs). Thousands of miRNA genes have been found in diverse species, and many of them a...MicroRNAs (miRNAs) are endogenous -22 nucleotide noncoding RNAs that regulate the expression of complementary messenger RNAs (mRNAs). Thousands of miRNA genes have been found in diverse species, and many of them are highly conserved. With the miRNA roles identified in nearly all aspects of biological processes, evidence is mounting that miRNAs could represent a new layer of regulatory network, and their regulatory effect might be much more pervasive than previously suspected. Here we focus on the posttranscriptional level gene regulation of miRNAs in animals and review how the miRNAs act to sustain and shape up the expression profiles of specific cell types; how the miRNAs integrate into the existing gene regulatory networks; and how the miRNAs influence the evolution of 3'UTR of mammalian mRNAs.展开更多
During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral ...During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regu- lating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChlP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators.展开更多
Heterosis is a biological phenomenon whereby the offspring from two parents show improved and superior performance than either inbred parental lines. Hybrid rice is one of the most successful apotheoses in crops utili...Heterosis is a biological phenomenon whereby the offspring from two parents show improved and superior performance than either inbred parental lines. Hybrid rice is one of the most successful apotheoses in crops utilizing heterosis. Transcriptional profiling of F1 super-hybrid rice Liangyou-2186 and its parents by serial analysis of gene expression (SAGE) revealed 1183 differentially expressed genes (DGs), among which DGs were found significantly enriched in pathways such as photosynthesis and carbon-fixation, and most of the key genes involved in the carbon-fixation pathway exhibited up-regulated expression in F1 hybrid rice. Moreover, increased catabolic activity of corresponding enzymes and photosynthetic efficiency were also detected, which combined to indicate that carbon fixation is enhanced in F1 hybrid, and might probably be associated with the yield vigor and heterosis in super-hybrid rice. By correlating DGs with yield-related quantitative trait loci (QTL), a potential relationship between differential gene expression and phenotypic changes was also found. In addition, a regulatory network involving circadian-rhythms and light signaling pathways was also found, as previously reported in Arabidopsis, which suggest that such a network might also be related with heterosis in hybrid rice. Altogether, the present study provides another view for understanding the molecular mechanism underlying heterosis in rice.展开更多
【目的】通过对东方蜜蜂微孢子虫(Nosema ceranae)纯化孢子与侵染意大利蜜蜂(Apis mellifera ligustica,简称意蜂)工蜂的东方蜜蜂微孢子虫的差异表达miRNA(DEmiRNA)及其靶mRNA进行系统分析,筛选、分析和探讨病原毒力因子和侵染因子相关...【目的】通过对东方蜜蜂微孢子虫(Nosema ceranae)纯化孢子与侵染意大利蜜蜂(Apis mellifera ligustica,简称意蜂)工蜂的东方蜜蜂微孢子虫的差异表达miRNA(DEmiRNA)及其靶mRNA进行系统分析,筛选、分析和探讨病原毒力因子和侵染因子相关的DEmiRNA及调控网络,在miRNA组学层面揭示东方蜜蜂微孢子虫对意蜂的侵染机制。【方法】利用small RNA-seq(sRNA-seq)技术对东方蜜蜂微孢子虫感染7 d和10 d的意蜂工蜂中肠和东方蜜蜂微孢子虫纯化孢子(NcCK)进行深度测序,通过连续比对rRNA数据库、西方蜜蜂(Apis mellifera)基因组和东方蜜蜂微孢子虫基因组筛滤出处于侵染过程的东方蜜蜂微孢子虫(NcT1和NcT2)数据和东方蜜蜂微孢子虫孢子的测序数据。根据P≤0.05,|log2 fold change|≥1的标准,通过比较分析筛选出各比较组中的差异表达miRNA(differentially expressed miRNA,DEmiRNA)。通过相关生物信息学软件对DEmiRNA进行表达谱分析,靶mRNA预测及功能和代谢通路注释,以及调控网络的构建与分析。通过Stem-loop RT-qPCR验证DEmiRNA的差异表达趋势及测序数据的可靠性。【结果】NcCK vs NcT1、NcCK vs NcT2和NcT1 vs NcT2比较组分别包含164、122和60个DEmiRNA。Venn分析结果显示,3个比较组共有的上调和下调miRNA分别为5和6个。上述DEmiRNA分别预测出1885、1733和1524个靶mRNA。这些靶mRNA分别注释到27、25和26个功能条目,其中注释数量最多的是新陈代谢进程、催化活性、细胞进程、结合和细胞。上述靶mRNA可分别注释到84、84和84条代谢通路,其中注释数量最多的是代谢途径、核糖体和次级代谢产物生物合成。此外,对于NcCK vs NcT1、NcCK vs NcT2和NcT1 vs NcT2中的DEmiRNA,分别有35、26和12个靶向结合MAPK信号通路相关靶mRNA,分别有49、40和17个DEmiRNA靶向结合糖酵解/糖异生通路相关靶mRNA。进一步分析发现,东方蜜蜂微孢子虫的DEmiRNA参与调控蓖麻毒素B凝集素展开更多
基金supported by the National Basic Research Program of China (973 Program) (No. 2006CB701506 and 2007CB815705)the Chinese Academy of Sciences (No. KSCX1-YW-R-34)+1 种基金the National Natural Science Foundation of China (No. 30525028, 30630013 and 30871343)the Natural Science Foundation of Yunnan Province of China.
文摘MicroRNAs (miRNAs) are endogenous -22 nucleotide noncoding RNAs that regulate the expression of complementary messenger RNAs (mRNAs). Thousands of miRNA genes have been found in diverse species, and many of them are highly conserved. With the miRNA roles identified in nearly all aspects of biological processes, evidence is mounting that miRNAs could represent a new layer of regulatory network, and their regulatory effect might be much more pervasive than previously suspected. Here we focus on the posttranscriptional level gene regulation of miRNAs in animals and review how the miRNAs act to sustain and shape up the expression profiles of specific cell types; how the miRNAs integrate into the existing gene regulatory networks; and how the miRNAs influence the evolution of 3'UTR of mammalian mRNAs.
文摘During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regu- lating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChlP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators.
文摘Heterosis is a biological phenomenon whereby the offspring from two parents show improved and superior performance than either inbred parental lines. Hybrid rice is one of the most successful apotheoses in crops utilizing heterosis. Transcriptional profiling of F1 super-hybrid rice Liangyou-2186 and its parents by serial analysis of gene expression (SAGE) revealed 1183 differentially expressed genes (DGs), among which DGs were found significantly enriched in pathways such as photosynthesis and carbon-fixation, and most of the key genes involved in the carbon-fixation pathway exhibited up-regulated expression in F1 hybrid rice. Moreover, increased catabolic activity of corresponding enzymes and photosynthetic efficiency were also detected, which combined to indicate that carbon fixation is enhanced in F1 hybrid, and might probably be associated with the yield vigor and heterosis in super-hybrid rice. By correlating DGs with yield-related quantitative trait loci (QTL), a potential relationship between differential gene expression and phenotypic changes was also found. In addition, a regulatory network involving circadian-rhythms and light signaling pathways was also found, as previously reported in Arabidopsis, which suggest that such a network might also be related with heterosis in hybrid rice. Altogether, the present study provides another view for understanding the molecular mechanism underlying heterosis in rice.
文摘【目的】通过对东方蜜蜂微孢子虫(Nosema ceranae)纯化孢子与侵染意大利蜜蜂(Apis mellifera ligustica,简称意蜂)工蜂的东方蜜蜂微孢子虫的差异表达miRNA(DEmiRNA)及其靶mRNA进行系统分析,筛选、分析和探讨病原毒力因子和侵染因子相关的DEmiRNA及调控网络,在miRNA组学层面揭示东方蜜蜂微孢子虫对意蜂的侵染机制。【方法】利用small RNA-seq(sRNA-seq)技术对东方蜜蜂微孢子虫感染7 d和10 d的意蜂工蜂中肠和东方蜜蜂微孢子虫纯化孢子(NcCK)进行深度测序,通过连续比对rRNA数据库、西方蜜蜂(Apis mellifera)基因组和东方蜜蜂微孢子虫基因组筛滤出处于侵染过程的东方蜜蜂微孢子虫(NcT1和NcT2)数据和东方蜜蜂微孢子虫孢子的测序数据。根据P≤0.05,|log2 fold change|≥1的标准,通过比较分析筛选出各比较组中的差异表达miRNA(differentially expressed miRNA,DEmiRNA)。通过相关生物信息学软件对DEmiRNA进行表达谱分析,靶mRNA预测及功能和代谢通路注释,以及调控网络的构建与分析。通过Stem-loop RT-qPCR验证DEmiRNA的差异表达趋势及测序数据的可靠性。【结果】NcCK vs NcT1、NcCK vs NcT2和NcT1 vs NcT2比较组分别包含164、122和60个DEmiRNA。Venn分析结果显示,3个比较组共有的上调和下调miRNA分别为5和6个。上述DEmiRNA分别预测出1885、1733和1524个靶mRNA。这些靶mRNA分别注释到27、25和26个功能条目,其中注释数量最多的是新陈代谢进程、催化活性、细胞进程、结合和细胞。上述靶mRNA可分别注释到84、84和84条代谢通路,其中注释数量最多的是代谢途径、核糖体和次级代谢产物生物合成。此外,对于NcCK vs NcT1、NcCK vs NcT2和NcT1 vs NcT2中的DEmiRNA,分别有35、26和12个靶向结合MAPK信号通路相关靶mRNA,分别有49、40和17个DEmiRNA靶向结合糖酵解/糖异生通路相关靶mRNA。进一步分析发现,东方蜜蜂微孢子虫的DEmiRNA参与调控蓖麻毒素B凝集素