期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
融合区域分割和边缘信息的居民地提取方法 被引量:14
1
作者 潘励 张志华 张剑清 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2006年第8期671-674,共4页
提出了一种集成边缘和区域分割信息的目标识别方法,其目的是在中小比例尺的航空影像中提取集团式居民地。在实际的航空影像上的实验表明,融合区域分割和边缘信息能够提高居民地提取的准确率。
关键词 边缘提取 区域分割 居民地 融合
下载PDF
基于多分辨率分割的区域图像融合 被引量:2
2
作者 冯舒 蒋宏 任章 《计算机仿真》 CSCD 2007年第5期183-185,共3页
图像融合是一项综合同一场景的多幅源图像信息的技术。现有的区域图像融合方法或者是只对最高层低频带分割并以此分割信息来指导所有层的融合,或者是其多分辨率分割方法过于复杂难以满足实时性。鉴于此,该文发展了一种基于多分辨率分割... 图像融合是一项综合同一场景的多幅源图像信息的技术。现有的区域图像融合方法或者是只对最高层低频带分割并以此分割信息来指导所有层的融合,或者是其多分辨率分割方法过于复杂难以满足实时性。鉴于此,该文发展了一种基于多分辨率分割的区域图像融合方法。它的主要特点是多分辨率分割。其步骤为:首先对源图像进行小波变换的多分辨率分解,然后对分解后每一层的低频图像都进行区域分割,最后用每一层分割得到的区域信息来分别指导每一层的融合。仿真表明该文发展的基于多分辨率分割的区域图像融合方法的融合性能要优于传统的基于窗口的图像融合方法和只对最高层低频带分割的区域图像融合方法。 展开更多
关键词 图像融合 基于窗口的融合 基于区域的融合 多分辨率分割
下载PDF
基于自适应块组割先验的噪声图像超分辨率重建 被引量:3
3
作者 李滔 何小海 +1 位作者 卿粼波 滕奇志 《自动化学报》 EI CSCD 北大核心 2017年第5期765-777,共13页
要增强噪声图像的分辨率,传统的串联方式依次进行去噪与超分辨率重建两个步骤,但去噪算法去除噪声的同时也损失了部分细节信息,影响了后续超分辨率重建的质量.为了使低分辨率噪声图像中所有细节信息都能参与超分辨率重建,本文以非局部... 要增强噪声图像的分辨率,传统的串联方式依次进行去噪与超分辨率重建两个步骤,但去噪算法去除噪声的同时也损失了部分细节信息,影响了后续超分辨率重建的质量.为了使低分辨率噪声图像中所有细节信息都能参与超分辨率重建,本文以非局部中心化稀疏表示(Nonlocally centralized sparse representation,NCSR)模型为基础,提出了基于自适应块组割(Patch-group-cuts,PGCuts)先验的噪声图像超分辨率重建方法,同时实现去噪和超分辨率重建功能.块组割先验基于新颖的三维邻域系统和块组模型,能够达到图像去噪、边缘平滑和边缘清晰等效果,重建时以边缘强度为参考对块组割先验进行自适应约束,由于块组割在平滑区域约束力较低,采用分区域融合的方式进一步抑制噪声.本文对合成的低分辨率噪声图像和真实的低分辨率噪声图像进行了重建实验,实验表明,基于自适应块组割先验的噪声图像超分辨率重建算法,在丰富细节的同时能抑制噪声的干扰,不但具有较高的峰值信噪比和结构相似度等客观评价值,而且在非光滑区域具有很好的主观重建效果. 展开更多
关键词 超分辨率 稀疏表示 块组割 分区域融合
下载PDF
基于NSCT的遥感图像融合性能评价及分析
4
作者 徐立中 马艳军 +1 位作者 黄凤辰 王慧斌 《中国科技论文在线》 CAS 2009年第1期45-53,共9页
为了寻求比小波变换更加有效的图像多分辨率分析方法,提出了一种基于非采样Contourlet变换(NSCT)和区域特性选择的遥感图像融合方法,并对NSCT在遥感图像融合中的性能及计算复杂性进行了深入分析。通过与离散小波变换(DWT)和采样的Contou... 为了寻求比小波变换更加有效的图像多分辨率分析方法,提出了一种基于非采样Contourlet变换(NSCT)和区域特性选择的遥感图像融合方法,并对NSCT在遥感图像融合中的性能及计算复杂性进行了深入分析。通过与离散小波变换(DWT)和采样的Contourlet变换(CT)的对比融合实验,结果表明,基于NSCT的融合方法计算复杂性较DWT明显提高,取得的融合效果更好。 展开更多
关键词 遥感图像融合 非采样CONTOURLET变换 区域特性选择 性能评价
下载PDF
基于二维经验模态分解的医学图像融合算法 被引量:29
5
作者 郑有志 覃征 《软件学报》 EI CSCD 北大核心 2009年第5期1096-1105,共10页
提出了一种自适应的二维经验模态分解(bidimensional empirical mode decomposition,简称BEMD)医学图像融合算法.待融合的医学图像经过BEMD分解成二维的内蕴模函数(bidimensional intrinsic mode function,简称BIMF)和趋势图像.BIMF图... 提出了一种自适应的二维经验模态分解(bidimensional empirical mode decomposition,简称BEMD)医学图像融合算法.待融合的医学图像经过BEMD分解成二维的内蕴模函数(bidimensional intrinsic mode function,简称BIMF)和趋势图像.BIMF图像经过Hilbert-Huang变换提取图像特征,然后,图像分解的各部分数据在区域融合规则下形成综合BEMD表示.最后,综合BEMD表示进行BEMD逆变换得到融合后的医学图像.BEMD分解方法是一种完全自适应的数据分解表达形式,具有比Fourier变化和小波分解更好的特性.该医学图像融合算法不需要预先定义滤波器或小波函数.实验结果表明,该算法与传统融合算法相比性能优越,能够大幅度提高融合图像的质量。 展开更多
关键词 图像融合 二维经验模态分解(BEMD) HILBERT-HUANG变换 区域融合规则 区域分割
下载PDF
基于膨胀卷积的多尺度焊缝缺陷检测算法 被引量:9
6
作者 谷静 吴怡宁 孟鑫昊 《光电子.激光》 CAS CSCD 北大核心 2022年第1期61-66,共6页
本文针对焊缝缺陷尺度变化不一导致的检测率效果不理想,提出了一种基于更快地区域卷积神经网络(faster region-based convolutional neural network, Faster R-CNN)对焊缝缺陷检测的改进算法。算法利用膨胀卷积在不同扩张率下进行特征融... 本文针对焊缝缺陷尺度变化不一导致的检测率效果不理想,提出了一种基于更快地区域卷积神经网络(faster region-based convolutional neural network, Faster R-CNN)对焊缝缺陷检测的改进算法。算法利用膨胀卷积在不同扩张率下进行特征融合,结合不同感受野下的卷积核更全面地提取不同尺度的特征信息,来提升目标的检测精度。同时利用深度可分离卷积,来对模型进行压缩,提高检测速度。实验表明,改进后的网络在保证运行速度的同时,能够提高检测速度,检测精度可以达到72%。 展开更多
关键词 焊缝缺陷检测 更快地区域卷积神经网络(faster region-based convolutional neural network Faster R-CNN) 特征融合 膨胀卷积
原文传递
改进Mask R-CNN的无人机影像建筑物提取
7
作者 方超 廖运茂 +2 位作者 刘飞 王坚 赵小平 《北京测绘》 2024年第1期97-101,共5页
从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以R... 从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以ResNet-101作为特征提取网络,在特征融合网络方面,通过添加自底向上的路径增强整个特征层次的定位能力,同时在特征融合中加入空洞空间金字塔池化模块(ASPP)来提高多尺度能力与改善模型性能。在自制建筑物数据集上的综合实验结果表明,与原始的Mask R-CNN方法相比,改进方法的mAP值提高了2.6%,能够很好地实现无人机影像建筑物实例提取。 展开更多
关键词 建筑物提取 Mask R-CNN 路径融合 空洞空间金字塔池化模块
下载PDF
多尺度级联R-FCN的尾灯检测算法研究 被引量:1
8
作者 白博 谢刚 续欣莹 《计算机工程与应用》 CSCD 北大核心 2020年第6期194-200,共7页
前方车辆尾灯检测是自动驾驶中环境感知的研究热点,为在复杂城市环境下实时检测车辆尾灯,将基于区域的全卷积网络(Region-based Fully Convolutional Networks,R-FCN)引入尾灯检测,提出了一种基于多尺度级联R-FCN的车辆尾灯检测算法。... 前方车辆尾灯检测是自动驾驶中环境感知的研究热点,为在复杂城市环境下实时检测车辆尾灯,将基于区域的全卷积网络(Region-based Fully Convolutional Networks,R-FCN)引入尾灯检测,提出了一种基于多尺度级联R-FCN的车辆尾灯检测算法。通过网络中的跨层连接融合尾灯的底层特征和高层语义,并加入批次归一化层加快网络的收敛速度,得到改进的R-FCN子网络,将一系列在不同交并比输入数据上训练的R-FCN子网络级联得到最终的检测网络。同时预测阶段采用改进的非极大值抑制获得最精准的检测结果。检测结果表明,该方法在CVPR数据集上获得总体94.04%的平均精度,单张图片平均检测耗时31 ms,在检测速度和精度上均有较好的性能。 展开更多
关键词 车辆尾灯检测 基于区域的全卷积网络(R-FCN) 级联网络 多尺度特征融合 批次归一化 非极大值抑制
下载PDF
基于区域特性的NSCT多聚焦图像融合新方法 被引量:3
9
作者 翟中华 孙季丰 《科学技术与工程》 2010年第29期7165-7170,共6页
提出了一种基于区域特性的NSCT多聚焦图像融合新算法。首先将待融合图像用NSCT分解成不同尺度,不同方向上的子带;然后对分解后的高频系数采用基于区域能量的方法进行融合,对低频系数采用基于区域方差的方法进行融合;最后将融合后的系数... 提出了一种基于区域特性的NSCT多聚焦图像融合新算法。首先将待融合图像用NSCT分解成不同尺度,不同方向上的子带;然后对分解后的高频系数采用基于区域能量的方法进行融合,对低频系数采用基于区域方差的方法进行融合;最后将融合后的系数进行NSCT反变换得到融合后的图像。实验结果表明基于区域特性的NSCT图像融合方法优于其他传统方法,验证了算法的合理性。 展开更多
关键词 图像融合 NSCT变换 小波变换 CONTOURLET变换 区域融合规则
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部