With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on ...With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on kernel joint discriminant analysis(KJDA)is proposed.Compared with the traditional feature extraction methods,KJDA possesses stronger discriminative ability in the kernel feature space.K-nearest neighbor(KNN)and kernel support vector machine(KSVM)are applied as feature classifiers to verify the classification effect.Experimental results on the measured aircraft datasets show that KJDA can reduce the dimensionality,and improve target recognition performance.展开更多
维数约减问题出现在信息处理的许多方面,非线性方法主要有局部线性嵌入LLE(LocallyLinear Embedding)、拉普拉斯特征映射(Laplacian E igenmap)、基于Hessian矩阵的LLE等,它们通过在高维空间中设计数据集所在流形的拓扑、几何等特性,很...维数约减问题出现在信息处理的许多方面,非线性方法主要有局部线性嵌入LLE(LocallyLinear Embedding)、拉普拉斯特征映射(Laplacian E igenmap)、基于Hessian矩阵的LLE等,它们通过在高维空间中设计数据集所在流形的拓扑、几何等特性,很好地弥补了线性降维不能发现数据集非线性结构的不足。其中局部线性嵌入这种非监督学习算法应用广泛,在此基础上将其用于作为雷达目标识别的五种飞机数据,取得了很好的效果。展开更多
基金supported by the National Natural Science Foundation of China(61471191)the Aeronautical Science Foundation of China(20152052026)the Foundation of Graduate Innovation Center in NUAA(kfjj20170313)
文摘With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on kernel joint discriminant analysis(KJDA)is proposed.Compared with the traditional feature extraction methods,KJDA possesses stronger discriminative ability in the kernel feature space.K-nearest neighbor(KNN)and kernel support vector machine(KSVM)are applied as feature classifiers to verify the classification effect.Experimental results on the measured aircraft datasets show that KJDA can reduce the dimensionality,and improve target recognition performance.
文摘维数约减问题出现在信息处理的许多方面,非线性方法主要有局部线性嵌入LLE(LocallyLinear Embedding)、拉普拉斯特征映射(Laplacian E igenmap)、基于Hessian矩阵的LLE等,它们通过在高维空间中设计数据集所在流形的拓扑、几何等特性,很好地弥补了线性降维不能发现数据集非线性结构的不足。其中局部线性嵌入这种非监督学习算法应用广泛,在此基础上将其用于作为雷达目标识别的五种飞机数据,取得了很好的效果。