利用逆P-集合,提出函数逆P-集合。函数逆P-集合是把函数概念引入到逆P-集合内,改进逆P-集合得到的。函数逆P-集合具有动态特征和规律(函数)特征。函数逆P-集合是由函数内逆P-集合S珔F与函数外逆P-集合S珔F珔构成的函数集合对;或者,(S珔F...利用逆P-集合,提出函数逆P-集合。函数逆P-集合是把函数概念引入到逆P-集合内,改进逆P-集合得到的。函数逆P-集合具有动态特征和规律(函数)特征。函数逆P-集合是由函数内逆P-集合S珔F与函数外逆P-集合S珔F珔构成的函数集合对;或者,(S珔F,珔SF珔)是函数逆P-集合。在一定条件下,函数逆P-集合(S珔F,S珔F珔)被还原成有限普通函数集合S。逆P-集合是把动态特征引入到有限普通集合X内(Cantor set X),改进有限普通集合X被提出的。函数逆P-集合具有与函数P-集合相反的动态特征、规律(函数)特征。本文给出函数逆P-集合的结构、还原和它的函数等价类特征。利用数据拆分-合成原理,给出逆P-信息规律融合与它的生成;给出逆P-信息规律融合的属性特征与属性定理。利用这些结果,给出逆P-信息规律融合生成的隐形信息图像与它的应用。函数逆P-集合与函数P-集合是两个独立的、特征不同的新模型。展开更多
We prove general reduction theorems for gauge natural operators transforming principal connections and classical linear connections on the base manifold into sections of an arbitrary gauge natural bundle. Then we appl...We prove general reduction theorems for gauge natural operators transforming principal connections and classical linear connections on the base manifold into sections of an arbitrary gauge natural bundle. Then we apply our results to the principal prolongation of connections. Finally we describe all such gauge natural operators for some special cases of a Lie group G.展开更多
逆P-集合是把动态特性引入到有限普通集合X内(Cantor set X),改进有限普通集合X被提出的。逆P-集合是由内逆P-集合X珔F与外逆P-集合X珔F珔构成的集合对;或者,(X珔F,X珔F珔)是逆P-集合。逆P-集合具有动态特性。逆P-推理是逆P-集合生成的...逆P-集合是把动态特性引入到有限普通集合X内(Cantor set X),改进有限普通集合X被提出的。逆P-集合是由内逆P-集合X珔F与外逆P-集合X珔F珔构成的集合对;或者,(X珔F,X珔F珔)是逆P-集合。逆P-集合具有动态特性。逆P-推理是逆P-集合生成的一个动态推理,它是由内逆P-推理与外逆P-推理共同构成的。利用逆P-集合和逆P-推理,给出逆P-等价类、内逆P-等价类和外逆P-等价类概念,逆P-等价类与普通等价类的关系,逆P-等价类的逆P-推理分离-还原与分离-还原定理。在静态-动态条件下,普通等价类是逆P-等价类的特例,逆P-等价类是普通等价类的一般形式。展开更多
文摘利用逆P-集合,提出函数逆P-集合。函数逆P-集合是把函数概念引入到逆P-集合内,改进逆P-集合得到的。函数逆P-集合具有动态特征和规律(函数)特征。函数逆P-集合是由函数内逆P-集合S珔F与函数外逆P-集合S珔F珔构成的函数集合对;或者,(S珔F,珔SF珔)是函数逆P-集合。在一定条件下,函数逆P-集合(S珔F,S珔F珔)被还原成有限普通函数集合S。逆P-集合是把动态特征引入到有限普通集合X内(Cantor set X),改进有限普通集合X被提出的。函数逆P-集合具有与函数P-集合相反的动态特征、规律(函数)特征。本文给出函数逆P-集合的结构、还原和它的函数等价类特征。利用数据拆分-合成原理,给出逆P-信息规律融合与它的生成;给出逆P-信息规律融合的属性特征与属性定理。利用这些结果,给出逆P-信息规律融合生成的隐形信息图像与它的应用。函数逆P-集合与函数P-集合是两个独立的、特征不同的新模型。
基金supported by the Ministry of Education of Czech Republic under the project MSM 0021630518
文摘We prove general reduction theorems for gauge natural operators transforming principal connections and classical linear connections on the base manifold into sections of an arbitrary gauge natural bundle. Then we apply our results to the principal prolongation of connections. Finally we describe all such gauge natural operators for some special cases of a Lie group G.
文摘逆P-集合是把动态特性引入到有限普通集合X内(Cantor set X),改进有限普通集合X被提出的。逆P-集合是由内逆P-集合X珔F与外逆P-集合X珔F珔构成的集合对;或者,(X珔F,X珔F珔)是逆P-集合。逆P-集合具有动态特性。逆P-推理是逆P-集合生成的一个动态推理,它是由内逆P-推理与外逆P-推理共同构成的。利用逆P-集合和逆P-推理,给出逆P-等价类、内逆P-等价类和外逆P-等价类概念,逆P-等价类与普通等价类的关系,逆P-等价类的逆P-推理分离-还原与分离-还原定理。在静态-动态条件下,普通等价类是逆P-等价类的特例,逆P-等价类是普通等价类的一般形式。