Uniform nanosized NiO particles were prepared by a chedrical coprecipitation usingNiCl2.6H2O as the starting material. The relationship between various annealing telnperaturesand grain size of NiO crystallite was inve...Uniform nanosized NiO particles were prepared by a chedrical coprecipitation usingNiCl2.6H2O as the starting material. The relationship between various annealing telnperaturesand grain size of NiO crystallite was investigated. Optical reflectivity spectra of Nanometer-sizedNiO powders at roonl temperature were studied. The results show that seven optical absorptionbands (P1. P2. P3. P4. P5. P6 and P7) with the peak energies of 3.30, 2.99, 2.78, 2.25,1.92, 1.72 and 1.07eV, respectively, are located on a continuous refiectivity background. P1.P2. P3 and P4 exhibit "blue shift", but P5. P6 and P7 present "red shift"in comparison withthat of single crystal NiO. The continuous reflectivity background increases rapidly with increasingthe annealing temperature from 500℃ to 600℃ to 700℃. The origins of P1 to P7 and thereasons of "blue shift", "red shift" and the increase of the reflectivity background with increasingthe annealing temperature have been analyzed in detail.展开更多
We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical ...We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water, particularly of free self-propulsion. The present results behave more credibly than the previous numerical studies and are close to the experimental results, and the aligned vortices pattern is discovered in cruising swimming.展开更多
The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influen...The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles. Other factors, such as fluid viscosity, bulk pressure may also change the slip length. We find that boundary slip only occurs under a certain density (bulk pressure). If the density is large enough, the slip length will tend to zero. In our simulations, a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is the low density layer that induces the boundary slip. The results may be helpful to understand recent experimental observations on the slippage of micro flows.展开更多
New data from FRB’s have provided an exciting new window on the cosmos. For the first time we have both Dispersion Measure (DM) from distant sources and their red-shift. This gives us the opportunity to determine the...New data from FRB’s have provided an exciting new window on the cosmos. For the first time we have both Dispersion Measure (DM) from distant sources and their red-shift. This gives us the opportunity to determine the average electron number density in intergalactic space and thus test New Tired Light predictions. Here, in an alternative cosmology, the universe is static and redshifts are produced by an interaction between photons and the electrons in the intergalactic medium. In a paper published in summer 2006 New Tired Light (NTL) predicted an average electron number density of n = 0.5 m<sup>-3</sup>. In 2016 a paper was published reporting that for the first time the DM of a FRB and the redshift of the host galaxy had been found. Using standard physics this confirmed the electron number density as n = 0.5 m<sup>-3</sup>. The prediction NTL made ten years earlier was proved to be correct. Using this measured electron number density enabled a definitive value of the Hubble constant to be made by New Tired Light and the value is 63 km/s per Mpc which compares well with currently accepted values. Importantly, since in NTL the redshift and dispersion are both due to the electrons in IG space, a relationship between DM’s and redshift can be predicted. NTL predicts that DM and LN(1 + z) will be directly proportional and related by the formula DM = mec/2hr<sub>e</sub>(3.086 × 1022) where me, re are the rest mass and classical radius of the electron, c is the speed of light in a vacuum and h is the plank constant. The numerical term is to change units from pccm<sup>-3</sup> to m<sup>-2</sup>. This reduces to DM = 2380LN(1 + z). Using data from five FRB’s this is tested and a linear relation is seen of the form DM = 1830LN(1 + z). The gradient of the plot from the observed data is within 23% of that predicted by NTL. Recently the Tolman Surface Brightness test has been applied to the HUDF and the results support a static universe whilst the possibility of two differing types of SN Ia whose distribution changes wi展开更多
This report is about the graviton redshift theory (GRST) which hypothesises the redshift of the energy of gravitons traveling in fields. A new source of energy loss in galaxy dynamics is introduced. Due to the hypothe...This report is about the graviton redshift theory (GRST) which hypothesises the redshift of the energy of gravitons traveling in fields. A new source of energy loss in galaxy dynamics is introduced. Due to the hypothetical interactions of gravitons with the expansion of the universe, which causes an energy loss of the gravitons due to cosmological redshift, the rotation equation for galaxies, which previously had the Newtonian potential energy and the graviton gravitational redshift energy loss, is now updated with the graviton cosmological redshift energy loss. From the galaxy rotation equation, the baryonic Tully-Fisher relation (BTFR) and the modified Newtonian dynamics (MOND) are defined in radial distribution form. Fits to galaxy rotation motion are detailed. A cosmic connection for the BTFR is defined. The result is that galaxy rotation curves are fully accounted for with the GRST rotation equation and the BTFR and MOND theories are incorporated into a unified framework.展开更多
We investigate a high-energy good-beam-quality krypton-lamp-pumped pulsed Nd: YA G solid-state laser with one pump cavity. The symmetrical resonator laser is developed and is rated at 80 J with beam parameter product...We investigate a high-energy good-beam-quality krypton-lamp-pumped pulsed Nd: YA G solid-state laser with one pump cavity. The symmetrical resonator laser is developed and is rated at 80 J with beam parameter product 12mm mrad. The total system electro-optics efficiency of the lamp-pumped YAG laser is as high as 3.3% and the stability of output energy is ±2% with pulse width tunable between 0.1 ms and 10ms. The experimental results are consistent with the theoretical analysis and simulation.展开更多
We report an efficient Q-switched laser action based on a semiconductor saturable absorber mirrors (SESAMs) as passively Q-switched laser starter and a Yb:LYSO alloyed crystal as gain material pumped directly by 97...We report an efficient Q-switched laser action based on a semiconductor saturable absorber mirrors (SESAMs) as passively Q-switched laser starter and a Yb:LYSO alloyed crystal as gain material pumped directly by 974nm InGaAs laser diodes. The output pulse duration is measured to be about 7μs, while the average power and the repetition rate of the pulse chain are about 0.92 W and 6.2 kHz, respectively, under 12.5 W absorbed pumping power. The Q-switched mode-locked pulse train is also observed in this setup. The laser performance shows that Yb:LYSO is a promising laser gain medium for laser-diode pumped compact solid-state lasers.展开更多
The Big Bang model was first proposed in 1931 by Georges Lemaitre. Lemaitre and Hubble discovered a linear correlation between distances to galaxies and their redshifts. The correlation between redshifts and distances...The Big Bang model was first proposed in 1931 by Georges Lemaitre. Lemaitre and Hubble discovered a linear correlation between distances to galaxies and their redshifts. The correlation between redshifts and distances arises in all expanding models of universe as the cosmological redshift is commonly attributed to stretching of wavelengths of photons propagating through the expanding space. Fritz Zwicky suggested that the cosmological redshift could be caused by the interaction of propagating light photons with certain inherent features of the cosmos to lose a fraction of their energy. However, Zwicky did not provide any physical mechanism to support his tired light hypothesis. In this paper, we have developed the mechanism of producing cosmological redshift through head-on collision between light and CMB photons. The process of repeated energy loss of visual photons through n head-on collisions with CMB photons, constitutes a primary mechanism for producing the Cosmological redshift z. While this process results in steady reduction in the energy of visual photons, it also results in continuous increase in the number of photons in the CMB. After a head-on collision with a CMB photon, the incoming light photon, with reduced energy, keeps moving on its original path without any deflection or scattering in any way. After propagation through very large distances in the intergalactic space, all light photons will tend to lose bulk of their energy and fall into the invisible region of the spectrum. Thus, this mechanism of producing cosmological redshift through gradual energy depletion, also explains the Olbers’s paradox.展开更多
Fast Radio Bursts from far away galaxies have travelled through the IGM and provide a tool to study its composition. Presently there are 23 FRB’s whose host galaxies have been identified and the redshift found. This ...Fast Radio Bursts from far away galaxies have travelled through the IGM and provide a tool to study its composition. Presently there are 23 FRB’s whose host galaxies have been identified and the redshift found. This gives us the opportunity to test Dispersion Measure versus redshift predictions made by two models. The Macquart relation for an expanding Universe and the New Tired Light relationship in a static universe. In New Tired Light, redshifts are produced when a photon is absorbed and re-emitted by the electrons in the IGM which recoil on both occasions. Some of the energy of the photon has been transferred to the kinetic energy of the recoiling electron. The photon has less energy, a lower frequency and a longer wavelength. It has been redshifted. Since dispersion is due to an interaction between radio signals and these same electrons one would expect a direct relationship between DM and redshift in the New Tired light model. The relation is DM=(mec/2hre)ln(1+z)and contains no adjustable parameters—just a combination of universal constants related to the electron and photon. Notice that the relation is independent of the electron number density ne since a change in ne affects both the DM and redshift equally. A graph of DM versus ln(1 + z) will be a straight line of gradient (mec/2hre)and, using SI units, substituting for the constants gives 7.318 × 1025 m−2. Using the data from the 23 well localized FRB’s, with the weighting of the DM’s for expansion removed (so that the data corresponds to a static universe), a graph of DM versus ln(1 + z) has a gradient of 6.7 × 1025 m−2—9% below the predicted (mec/2hre). The Macquart relation involves highly processed data and adjustable parameters to allow for “dark energy” and “dark matter” (neither of which has yet been found) and can be reduced to DM = 850z (in units of pc∙cm−3). Using the data from this set of localized FRB’s gives a trendline with gradient 1.10 × 103 pc∙cm−3—almost 30% higher than that predicted in an expandin展开更多
Gamma-ray bursts (GRBs) are extremely powerful explosions that have been traditionally classified into two categories: long bursts (LGRBs) with an observed duration T<sub>90 </sub>> 2 s, and short burst...Gamma-ray bursts (GRBs) are extremely powerful explosions that have been traditionally classified into two categories: long bursts (LGRBs) with an observed duration T<sub>90 </sub>> 2 s, and short bursts (SGRBs) with an observed duration T<sub>90</sub> T<sub>90</sub> is the time interval during which 90% of the fluence is detected. LGRBs are believed to emanate from the core-collapse of massive stars, while SGRBs are believed to result from the merging of two compact objects, like two neutron stars. Because LGRBs are produced by the violent death of massive stars, we expect that their redshift distribution should trace the star-formation rate (SFR). The purpose of our study is to investigate the extent to which the redshift distribution of LGRBs follows and reflects the SFR. We use a sample of 370 LGRBs taken from the Swift catalog, and we investigate different models for the LGRB redshift distribution. We also carry out Monte Carlo simulations to check the consistency of our results. Our results indicate that the SFR can describe the LGRB redshift distribution well for high redshift bursts, but it needs an evolution term to fit the distribution well at low redshift.展开更多
Physics is a branch of science to study matter and its motion in space and time. Development of physics usually upgrades human perspective and understanding of the space and time. Einstein successfully developed speci...Physics is a branch of science to study matter and its motion in space and time. Development of physics usually upgrades human perspective and understanding of the space and time. Einstein successfully developed special and general theories of relativity and creatively promoted our perspective of spacetime from Newton’s absolute space and time to his relative spacetime. Based on redshift and distance measurements of galaxies and distant type Ia supernovae, cosmologists have suggested that our universe is expanding at an ever-increasing rate driven by a mysterious dark energy. Recently, the author has proposed that spacetime is dynamic. Spacetime is said to be absolute if it is independent of matter and motion, relative if it is affected by matter and motion, and dynamic if it mutually interacts with matter and motion. In dynamic spacetime, not only do matter and motion distort spacetime, but they are also affected by the distorted spacetime. Spacetime to be dynamic is a consequence of a deep insight to Mach’s principle, which tells us that the inertia of an object results from the gravitational interaction by the rest of the universe. Reaction of dynamic spacetime on a traveling light causes light redshift. Reaction of dynamic spacetime on a fast moving neutrino slows down the neutrino. The derived redshift-distance relation perfectly explained the measurements of distant type Ia supernovae and gamma ray bursts (GRBs) and also naturally obtained Hubble’s law as an approximate relation at small redshift. This explanation of cosmological redshift as the opposition of dynamic spacetime does not mandate the universe to be expanding and accelerating, so that it does not need the universe to be initiated from a Big Bang and driven out mainly by a mysterious dark energy. Extremely slowed down neutrinos in dynamic spacetime, when they are gravitationally trapped around clusters, galaxies, and any celestial objects, would play the role of dark matter in explaining the velocity-radius relations of galaxy’s or clust展开更多
Given the pending completion and publication of the final Dark Energy Survey (DESI) results, this letter presents the corresponding predictions of the Haug-Tatum cosmology (HTC) model. In particular, we show in tabula...Given the pending completion and publication of the final Dark Energy Survey (DESI) results, this letter presents the corresponding predictions of the Haug-Tatum cosmology (HTC) model. In particular, we show in tabular and graphic form the “dark energy decay” curve which the HTC model predicts for cosmological redshifts covering the range of 0 - 2.0 z. Furthermore, we present the HTC model distance-vs-redshift curve in comparison to the three very different curves (for luminosity distance, angular diameter distance, and co-moving distance) calculated within the Lambda-CDM model. Whether the expansion of our universe is actually undergoing slight acceleration or the finely-tuned cosmic coasting at constant velocity of Rh = ct models, including HTC, will hopefully soon be answered by the many pending observational studies.展开更多
Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time. However the correction & partial due to the limitation of hardware. We propose a ki...Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time. However the correction & partial due to the limitation of hardware. We propose a kind of hybrid image post-processing method, which uses the blind deconvolution combined with the residual data in wavefront sensor to restore the partially adaptive optics corrected retinal image. This method is applied in the image restoration of the vivid human retinal images. The results show that it is effective to improve the retinal image quality.展开更多
Using an external couple cavity and a pump beam compression system, efficient 1.5 μm eye-safe Raman laser is obtained based on BaWO4 crystal. The largest output energy is 8.5mJ, corresponding to an electric-optical c...Using an external couple cavity and a pump beam compression system, efficient 1.5 μm eye-safe Raman laser is obtained based on BaWO4 crystal. The largest output energy is 8.5mJ, corresponding to an electric-optical conversion efficiency of 47%.展开更多
文摘Uniform nanosized NiO particles were prepared by a chedrical coprecipitation usingNiCl2.6H2O as the starting material. The relationship between various annealing telnperaturesand grain size of NiO crystallite was investigated. Optical reflectivity spectra of Nanometer-sizedNiO powders at roonl temperature were studied. The results show that seven optical absorptionbands (P1. P2. P3. P4. P5. P6 and P7) with the peak energies of 3.30, 2.99, 2.78, 2.25,1.92, 1.72 and 1.07eV, respectively, are located on a continuous refiectivity background. P1.P2. P3 and P4 exhibit "blue shift", but P5. P6 and P7 present "red shift"in comparison withthat of single crystal NiO. The continuous reflectivity background increases rapidly with increasingthe annealing temperature from 500℃ to 600℃ to 700℃. The origins of P1 to P7 and thereasons of "blue shift", "red shift" and the increase of the reflectivity background with increasingthe annealing temperature have been analyzed in detail.
文摘We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water, particularly of free self-propulsion. The present results behave more credibly than the previous numerical studies and are close to the experimental results, and the aligned vortices pattern is discovered in cruising swimming.
基金Supported by the One-Hundred Talents Project of Chinese Academy of Sciences, the National Natural Science Foundation of China under Grant Nos 10474109, 10674146 and 10447001, the Guangxi Science Foundation under Grant No 0640064, the National Basic Research Programme of China under Grant No 2006CB708612, Zhejiang Funding Scheme to Young College Teachers and Shanghai Supercomputer Center of China. We thank Professor Fang Haiping for useful discussion and Shanghai Supercomputer Centre of China for the support of computation.
文摘The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles. Other factors, such as fluid viscosity, bulk pressure may also change the slip length. We find that boundary slip only occurs under a certain density (bulk pressure). If the density is large enough, the slip length will tend to zero. In our simulations, a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is the low density layer that induces the boundary slip. The results may be helpful to understand recent experimental observations on the slippage of micro flows.
文摘New data from FRB’s have provided an exciting new window on the cosmos. For the first time we have both Dispersion Measure (DM) from distant sources and their red-shift. This gives us the opportunity to determine the average electron number density in intergalactic space and thus test New Tired Light predictions. Here, in an alternative cosmology, the universe is static and redshifts are produced by an interaction between photons and the electrons in the intergalactic medium. In a paper published in summer 2006 New Tired Light (NTL) predicted an average electron number density of n = 0.5 m<sup>-3</sup>. In 2016 a paper was published reporting that for the first time the DM of a FRB and the redshift of the host galaxy had been found. Using standard physics this confirmed the electron number density as n = 0.5 m<sup>-3</sup>. The prediction NTL made ten years earlier was proved to be correct. Using this measured electron number density enabled a definitive value of the Hubble constant to be made by New Tired Light and the value is 63 km/s per Mpc which compares well with currently accepted values. Importantly, since in NTL the redshift and dispersion are both due to the electrons in IG space, a relationship between DM’s and redshift can be predicted. NTL predicts that DM and LN(1 + z) will be directly proportional and related by the formula DM = mec/2hr<sub>e</sub>(3.086 × 1022) where me, re are the rest mass and classical radius of the electron, c is the speed of light in a vacuum and h is the plank constant. The numerical term is to change units from pccm<sup>-3</sup> to m<sup>-2</sup>. This reduces to DM = 2380LN(1 + z). Using data from five FRB’s this is tested and a linear relation is seen of the form DM = 1830LN(1 + z). The gradient of the plot from the observed data is within 23% of that predicted by NTL. Recently the Tolman Surface Brightness test has been applied to the HUDF and the results support a static universe whilst the possibility of two differing types of SN Ia whose distribution changes wi
文摘This report is about the graviton redshift theory (GRST) which hypothesises the redshift of the energy of gravitons traveling in fields. A new source of energy loss in galaxy dynamics is introduced. Due to the hypothetical interactions of gravitons with the expansion of the universe, which causes an energy loss of the gravitons due to cosmological redshift, the rotation equation for galaxies, which previously had the Newtonian potential energy and the graviton gravitational redshift energy loss, is now updated with the graviton cosmological redshift energy loss. From the galaxy rotation equation, the baryonic Tully-Fisher relation (BTFR) and the modified Newtonian dynamics (MOND) are defined in radial distribution form. Fits to galaxy rotation motion are detailed. A cosmic connection for the BTFR is defined. The result is that galaxy rotation curves are fully accounted for with the GRST rotation equation and the BTFR and MOND theories are incorporated into a unified framework.
基金Supported by the National Natural Science Foundation of China under Grant No 604070090, and the Beijing Key Project for Technology under Grant No 954810900.
文摘We investigate a high-energy good-beam-quality krypton-lamp-pumped pulsed Nd: YA G solid-state laser with one pump cavity. The symmetrical resonator laser is developed and is rated at 80 J with beam parameter product 12mm mrad. The total system electro-optics efficiency of the lamp-pumped YAG laser is as high as 3.3% and the stability of output energy is ±2% with pulse width tunable between 0.1 ms and 10ms. The experimental results are consistent with the theoretical analysis and simulation.
基金Supported by the National Basic Research Programme of China under Grant No 2006CB806005, the Shanghai Pujiang Program (06PJ14035), the National Natural Science Foundation of China under Grant No 10774045, the Key Project of the Ministry of Education of China (44K20080), and the SRF for ROCS, SEM.
文摘We report an efficient Q-switched laser action based on a semiconductor saturable absorber mirrors (SESAMs) as passively Q-switched laser starter and a Yb:LYSO alloyed crystal as gain material pumped directly by 974nm InGaAs laser diodes. The output pulse duration is measured to be about 7μs, while the average power and the repetition rate of the pulse chain are about 0.92 W and 6.2 kHz, respectively, under 12.5 W absorbed pumping power. The Q-switched mode-locked pulse train is also observed in this setup. The laser performance shows that Yb:LYSO is a promising laser gain medium for laser-diode pumped compact solid-state lasers.
文摘The Big Bang model was first proposed in 1931 by Georges Lemaitre. Lemaitre and Hubble discovered a linear correlation between distances to galaxies and their redshifts. The correlation between redshifts and distances arises in all expanding models of universe as the cosmological redshift is commonly attributed to stretching of wavelengths of photons propagating through the expanding space. Fritz Zwicky suggested that the cosmological redshift could be caused by the interaction of propagating light photons with certain inherent features of the cosmos to lose a fraction of their energy. However, Zwicky did not provide any physical mechanism to support his tired light hypothesis. In this paper, we have developed the mechanism of producing cosmological redshift through head-on collision between light and CMB photons. The process of repeated energy loss of visual photons through n head-on collisions with CMB photons, constitutes a primary mechanism for producing the Cosmological redshift z. While this process results in steady reduction in the energy of visual photons, it also results in continuous increase in the number of photons in the CMB. After a head-on collision with a CMB photon, the incoming light photon, with reduced energy, keeps moving on its original path without any deflection or scattering in any way. After propagation through very large distances in the intergalactic space, all light photons will tend to lose bulk of their energy and fall into the invisible region of the spectrum. Thus, this mechanism of producing cosmological redshift through gradual energy depletion, also explains the Olbers’s paradox.
文摘Fast Radio Bursts from far away galaxies have travelled through the IGM and provide a tool to study its composition. Presently there are 23 FRB’s whose host galaxies have been identified and the redshift found. This gives us the opportunity to test Dispersion Measure versus redshift predictions made by two models. The Macquart relation for an expanding Universe and the New Tired Light relationship in a static universe. In New Tired Light, redshifts are produced when a photon is absorbed and re-emitted by the electrons in the IGM which recoil on both occasions. Some of the energy of the photon has been transferred to the kinetic energy of the recoiling electron. The photon has less energy, a lower frequency and a longer wavelength. It has been redshifted. Since dispersion is due to an interaction between radio signals and these same electrons one would expect a direct relationship between DM and redshift in the New Tired light model. The relation is DM=(mec/2hre)ln(1+z)and contains no adjustable parameters—just a combination of universal constants related to the electron and photon. Notice that the relation is independent of the electron number density ne since a change in ne affects both the DM and redshift equally. A graph of DM versus ln(1 + z) will be a straight line of gradient (mec/2hre)and, using SI units, substituting for the constants gives 7.318 × 1025 m−2. Using the data from the 23 well localized FRB’s, with the weighting of the DM’s for expansion removed (so that the data corresponds to a static universe), a graph of DM versus ln(1 + z) has a gradient of 6.7 × 1025 m−2—9% below the predicted (mec/2hre). The Macquart relation involves highly processed data and adjustable parameters to allow for “dark energy” and “dark matter” (neither of which has yet been found) and can be reduced to DM = 850z (in units of pc∙cm−3). Using the data from this set of localized FRB’s gives a trendline with gradient 1.10 × 103 pc∙cm−3—almost 30% higher than that predicted in an expandin
文摘Gamma-ray bursts (GRBs) are extremely powerful explosions that have been traditionally classified into two categories: long bursts (LGRBs) with an observed duration T<sub>90 </sub>> 2 s, and short bursts (SGRBs) with an observed duration T<sub>90</sub> T<sub>90</sub> is the time interval during which 90% of the fluence is detected. LGRBs are believed to emanate from the core-collapse of massive stars, while SGRBs are believed to result from the merging of two compact objects, like two neutron stars. Because LGRBs are produced by the violent death of massive stars, we expect that their redshift distribution should trace the star-formation rate (SFR). The purpose of our study is to investigate the extent to which the redshift distribution of LGRBs follows and reflects the SFR. We use a sample of 370 LGRBs taken from the Swift catalog, and we investigate different models for the LGRB redshift distribution. We also carry out Monte Carlo simulations to check the consistency of our results. Our results indicate that the SFR can describe the LGRB redshift distribution well for high redshift bursts, but it needs an evolution term to fit the distribution well at low redshift.
文摘Physics is a branch of science to study matter and its motion in space and time. Development of physics usually upgrades human perspective and understanding of the space and time. Einstein successfully developed special and general theories of relativity and creatively promoted our perspective of spacetime from Newton’s absolute space and time to his relative spacetime. Based on redshift and distance measurements of galaxies and distant type Ia supernovae, cosmologists have suggested that our universe is expanding at an ever-increasing rate driven by a mysterious dark energy. Recently, the author has proposed that spacetime is dynamic. Spacetime is said to be absolute if it is independent of matter and motion, relative if it is affected by matter and motion, and dynamic if it mutually interacts with matter and motion. In dynamic spacetime, not only do matter and motion distort spacetime, but they are also affected by the distorted spacetime. Spacetime to be dynamic is a consequence of a deep insight to Mach’s principle, which tells us that the inertia of an object results from the gravitational interaction by the rest of the universe. Reaction of dynamic spacetime on a traveling light causes light redshift. Reaction of dynamic spacetime on a fast moving neutrino slows down the neutrino. The derived redshift-distance relation perfectly explained the measurements of distant type Ia supernovae and gamma ray bursts (GRBs) and also naturally obtained Hubble’s law as an approximate relation at small redshift. This explanation of cosmological redshift as the opposition of dynamic spacetime does not mandate the universe to be expanding and accelerating, so that it does not need the universe to be initiated from a Big Bang and driven out mainly by a mysterious dark energy. Extremely slowed down neutrinos in dynamic spacetime, when they are gravitationally trapped around clusters, galaxies, and any celestial objects, would play the role of dark matter in explaining the velocity-radius relations of galaxy’s or clust
文摘Given the pending completion and publication of the final Dark Energy Survey (DESI) results, this letter presents the corresponding predictions of the Haug-Tatum cosmology (HTC) model. In particular, we show in tabular and graphic form the “dark energy decay” curve which the HTC model predicts for cosmological redshifts covering the range of 0 - 2.0 z. Furthermore, we present the HTC model distance-vs-redshift curve in comparison to the three very different curves (for luminosity distance, angular diameter distance, and co-moving distance) calculated within the Lambda-CDM model. Whether the expansion of our universe is actually undergoing slight acceleration or the finely-tuned cosmic coasting at constant velocity of Rh = ct models, including HTC, will hopefully soon be answered by the many pending observational studies.
文摘Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time. However the correction & partial due to the limitation of hardware. We propose a kind of hybrid image post-processing method, which uses the blind deconvolution combined with the residual data in wavefront sensor to restore the partially adaptive optics corrected retinal image. This method is applied in the image restoration of the vivid human retinal images. The results show that it is effective to improve the retinal image quality.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60508010 and 50590401, the Natural Science Foundation of Shandong Province under Grant No Y2004F05, and the Programme for Taishan Scholar of Shandong Province.
文摘Using an external couple cavity and a pump beam compression system, efficient 1.5 μm eye-safe Raman laser is obtained based on BaWO4 crystal. The largest output energy is 8.5mJ, corresponding to an electric-optical conversion efficiency of 47%.