The natural frequencies, complex modes and critical speeds of an axially moving rectangular plate, which is partially immersed in a fluid and subjected to a pretension, are investigated. The effects of free surface wa...The natural frequencies, complex modes and critical speeds of an axially moving rectangular plate, which is partially immersed in a fluid and subjected to a pretension, are investigated. The effects of free surface waves, compressibility and viscidity of the fluid are neglected in the analysis. The subsection functions are used to describe the discontinuous characteristics of the system due to partial immersion. The classical thin plate theory is adopted to formulate the equations of motion of a vibrating plate. The velocity potential and Bernoulli's equation are used to describe the fluid pressure acting on the moving plate. The effect of fluid on the vibrations of the plate may be equivalent to the added mass on the plate. The effects of distance ratio, moving speed, immersed-depth ratio, boundary conditions, stiffness ratio and aspect ratio of the plate as well as the fluid-plate density ratios on the free vibrations of the moving plate-fluid system are investigated.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11302046 and 11172063)
文摘The natural frequencies, complex modes and critical speeds of an axially moving rectangular plate, which is partially immersed in a fluid and subjected to a pretension, are investigated. The effects of free surface waves, compressibility and viscidity of the fluid are neglected in the analysis. The subsection functions are used to describe the discontinuous characteristics of the system due to partial immersion. The classical thin plate theory is adopted to formulate the equations of motion of a vibrating plate. The velocity potential and Bernoulli's equation are used to describe the fluid pressure acting on the moving plate. The effect of fluid on the vibrations of the plate may be equivalent to the added mass on the plate. The effects of distance ratio, moving speed, immersed-depth ratio, boundary conditions, stiffness ratio and aspect ratio of the plate as well as the fluid-plate density ratios on the free vibrations of the moving plate-fluid system are investigated.