By means of the determinantal formulae for inverse and reciprocal differences with coincident data points, the limiting case of Thiele's interpolating continued fraction expansion is studied in this paper and give...By means of the determinantal formulae for inverse and reciprocal differences with coincident data points, the limiting case of Thiele's interpolating continued fraction expansion is studied in this paper and given numerical example shows that the limiting Thiele's continued fraction expansion can be determined once for all instead of carrying out computations for each step to obtain each convergent as done in [3].展开更多
Creating materials with time-variant properties is critical for breaking reciprocity that imposes fundamental limitations on wave propagation.However,it is challenging to realize efficient and ultrafast temporal modul...Creating materials with time-variant properties is critical for breaking reciprocity that imposes fundamental limitations on wave propagation.However,it is challenging to realize efficient and ultrafast temporal modulation in a photonic system.Here,leveraging both spatial and temporal phase manipulation offered by an ultrathin nonlinear metasurface,we experimentally demonstrated nonreciprocal light reflection at wavelengths around 860 nm.The metasurface,with travelling-wave modulation upon nonlinear Kerr building blocks,creates spatial phase gradient and multi-terahertz temporal phase wobbling,which leads to unidirectional photonic transitions in both the momentum and energy spaces.We observed completely asymmetric reflections in forward and backward light propagations over a large bandwidth around 5.77 THz within a sub-wavelength interaction length of 150 nm.Our approach highlights a potential means for creating miniaturized and integratable nonreciprocal optical components.展开更多
Environments with reciprocal patchiness of resources, in which the availability of two resources such as light and soil nutrients are patchily distributed in horizontal space and negatively correlated in each patch, a...Environments with reciprocal patchiness of resources, in which the availability of two resources such as light and soil nutrients are patchily distributed in horizontal space and negatively correlated in each patch, are common in many ecosystems. The strategies by which clonal plants adapt to this type of heterogeneous environment were examined in three stoloniferous herbs,Potentilla reptans L. var. sericophylla Franch., P. anserina L. and Halerpestes ruthenica (Jacq.) Qvcz., commonly inhabiting forest understories, grasslands and low saline meadows, respectively. As pairs of connected ramets were subjected to reciprocal patchiness of light and nutrients, stolon connection between the two ramets significantly enhanced biomass of both ramet growing in low light intensity but high soil nutrient condition (LH ramet) and ramet growing in high light intensity but low soil nutrient condition (HL ramet) as well as whole ramet pairs (consisting of LH ramets and HL ramets). Additionally, stolon connection greatly increased root/shoot ratio of LH ramet while significantly decreased that of HL ramet. The results indicate that a reciprocal transportation of resources between interconnected ramets and a functional specialization of ramets in uptake of abundant resources occurred. By resource sharing and functional specialization, clonal plants can efficiently acquire locally abundant resources and buffer the stress caused by reciprocal patchiness of resources.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way some basic principles for linear coupled dynamic thermopiezoelectricity can be established...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way some basic principles for linear coupled dynamic thermopiezoelectricity can be established systematically. An important integral relation in terms of convolutions is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem in linear coupled dynamic thermopiezoelectricity, but also to derive systematically the complementary functionals for eleven-field, nine-field, six-field and three-field simplified Gurtin-type variational principles. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.展开更多
Multi-Target Tracking Guidance(MTTG)in unknown environments has great potential values in applications for Unmanned Aerial Vehicle(UAV)swarms.Although Multi-Agent Deep Reinforcement Learning(MADRL)is a promising techn...Multi-Target Tracking Guidance(MTTG)in unknown environments has great potential values in applications for Unmanned Aerial Vehicle(UAV)swarms.Although Multi-Agent Deep Reinforcement Learning(MADRL)is a promising technique for learning cooperation,most of the existing methods cannot scale well to decentralized UAV swarms due to their computational complexity or global information requirement.This paper proposes a decentralized MADRL method using the maximum reciprocal reward to learn cooperative tracking policies for UAV swarms.This method reshapes each UAV’s reward with a regularization term that is defined as the dot product of the reward vector of all neighbor UAVs and the corresponding dependency vector between the UAV and the neighbors.And the dependence between UAVs can be directly captured by the Pointwise Mutual Information(PMI)neural network without complicated aggregation statistics.Then,the experience sharing Reciprocal Reward Multi-Agent Actor-Critic(MAAC-R)algorithm is proposed to learn the cooperative sharing policy for all homogeneous UAVs.Experiments demonstrate that the proposed algorithm can improve the UAVs’cooperation more effectively than the baseline algorithms,and can stimulate a rich form of cooperative tracking behaviors of UAV swarms.Besides,the learned policy can better scale to other scenarios with more UAVs and targets.展开更多
Better understanding of the factors that influence crop nitrogen(N) requirement plays an important role in improving regional N recommendations for rice(Oryza sativa L.) production. We collected data from 1 280 plot-l...Better understanding of the factors that influence crop nitrogen(N) requirement plays an important role in improving regional N recommendations for rice(Oryza sativa L.) production. We collected data from 1 280 plot-level measurements in different reaches of the Yangtze River, China to determine which factors contributed to variability in N requirement in rice. Yield, variety, and cropping system were significantly related to N requirement. The N requirement remained consistent at about 18.6 kg N Mg^(-1)grain as grain yield increased from 7 to 9 Mg ha^(-1), then decreased to 18.1, 16.9, and 15.9 kg N Mg^(-1)grain as yield increased to 9–10, 10–11, and > 11 Mg ha^(-1), respectively. The decreased requirement for N with increasing yield was attributable to declining N concentrations in grain and straw and increased harvest index. Super rice variety had lower N requirement(17.7 kg N Mg^(-1)grain) than ordinary inbred and hybrid varieties(18.5 and 18.3 kg N Mg^(-1)grain, respectively), which was a result of lower grain and straw N concentrations of super rice. The N requirements were 19.2, 17.8, and 17.5 kg N Mg^(-1)grain for early, middle, and late rice cropping systems, respectively. In conclusion, the rice N requirement was affected by multiple factors, including yield, variety, and cropping system, all of which should be considered when planning for optimal N management.展开更多
The instantaneous kinematics of a special 3-UPU parallel platform manipulator is discussed. First, the instantaneous motions of the 3-UPU manipulator in four kinds of positions and a special manipulator are studied by...The instantaneous kinematics of a special 3-UPU parallel platform manipulator is discussed. First, the instantaneous motions of the 3-UPU manipulator in four kinds of positions and a special manipulator are studied by reciprocal screw theory. Then, the principal screws in one of four positions are obtained. It is shown that the moving platform has five degrees of freedom (DOF) in the initial position or after a translation along the z-axis; In the generic position, the mechanism only has three DOF, moreover the three DOF characteristics are different in different position. The instantaneous kinematic characteristics of alike 3-UPU mechanisms are very different in different position and special structure. The results presented are important to the use of alike 3-UPU parallel manipulator and contribute to the mechanism theory .展开更多
Reciprocity may be understood as relation of action and reaction in the sense of Hegel’s philosophical definition. Quoting Kant, freedom and ethical necessities are reciprocally limited. In this contribution, a more ...Reciprocity may be understood as relation of action and reaction in the sense of Hegel’s philosophical definition. Quoting Kant, freedom and ethical necessities are reciprocally limited. In this contribution, a more mathematical than philosophical reflection about reciprocity as an ever-present dual property of everything was given. As a crystallographer, the author is familiar with the action of Fourier transforms and the relation between a crystal lattice and its reciprocal lattice, already pointing to the duality between particles and waves. A generalization of the reciprocity term was stimulated by results of the famous Information Relativity (IR) theory of Suleiman with its proven physical manifestation of matter-wave duality, compared to the set-theoretical E-Infinity theory developed by El Naschie, where the zero set represents the pre-quantum particle, and the pre-quantum wave is assigned to the empty set boundary surrounding the pre-particle. Expectedly, the most irrational number of the golden mean is involved in these thoughts, because this number is intimately connected with its inverse. An important role plays further Hardy’s maximum quantum entanglement probability as the fifth power of φand its connection to the dark matter. Remembering, the eleven dimensions in Witten’s M-theory may be decomposed into the Lucas number L5 = 11 = φ−5 – φ5. Reciprocity is indeed omnipresent in our world as piloting waves that accompany all observable earthen and cosmic matter. As a side effect of the IR theory some fundamental constants such as the gyromagnetic factor of the electron, Sommerfeld’s fine-structure constant as well as the charge of the electron must be marginally changed caused by altered relativistic corrections. Consequences also arise for our vision about the evolution of life and consciousness.展开更多
基金Supported by the Foundation for Excellent Young Teachers of the Ministry of Education of China and inpart by the Foundation f
文摘By means of the determinantal formulae for inverse and reciprocal differences with coincident data points, the limiting case of Thiele's interpolating continued fraction expansion is studied in this paper and given numerical example shows that the limiting Thiele's continued fraction expansion can be determined once for all instead of carrying out computations for each step to obtain each convergent as done in [3].
基金partially supported from the Gordon and Betty Moore Foundation and the Penn State MRSEC,the Center for Nanoscale Science,under award number NSF DMR-1420620.
文摘Creating materials with time-variant properties is critical for breaking reciprocity that imposes fundamental limitations on wave propagation.However,it is challenging to realize efficient and ultrafast temporal modulation in a photonic system.Here,leveraging both spatial and temporal phase manipulation offered by an ultrathin nonlinear metasurface,we experimentally demonstrated nonreciprocal light reflection at wavelengths around 860 nm.The metasurface,with travelling-wave modulation upon nonlinear Kerr building blocks,creates spatial phase gradient and multi-terahertz temporal phase wobbling,which leads to unidirectional photonic transitions in both the momentum and energy spaces.We observed completely asymmetric reflections in forward and backward light propagations over a large bandwidth around 5.77 THz within a sub-wavelength interaction length of 150 nm.Our approach highlights a potential means for creating miniaturized and integratable nonreciprocal optical components.
文摘Environments with reciprocal patchiness of resources, in which the availability of two resources such as light and soil nutrients are patchily distributed in horizontal space and negatively correlated in each patch, are common in many ecosystems. The strategies by which clonal plants adapt to this type of heterogeneous environment were examined in three stoloniferous herbs,Potentilla reptans L. var. sericophylla Franch., P. anserina L. and Halerpestes ruthenica (Jacq.) Qvcz., commonly inhabiting forest understories, grasslands and low saline meadows, respectively. As pairs of connected ramets were subjected to reciprocal patchiness of light and nutrients, stolon connection between the two ramets significantly enhanced biomass of both ramet growing in low light intensity but high soil nutrient condition (LH ramet) and ramet growing in high light intensity but low soil nutrient condition (HL ramet) as well as whole ramet pairs (consisting of LH ramets and HL ramets). Additionally, stolon connection greatly increased root/shoot ratio of LH ramet while significantly decreased that of HL ramet. The results indicate that a reciprocal transportation of resources between interconnected ramets and a functional specialization of ramets in uptake of abundant resources occurred. By resource sharing and functional specialization, clonal plants can efficiently acquire locally abundant resources and buffer the stress caused by reciprocal patchiness of resources.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19672074)Research Grand Council of Hong Kong, No. RGC97/98, HKUST 6055/97E.
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way some basic principles for linear coupled dynamic thermopiezoelectricity can be established systematically. An important integral relation in terms of convolutions is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem in linear coupled dynamic thermopiezoelectricity, but also to derive systematically the complementary functionals for eleven-field, nine-field, six-field and three-field simplified Gurtin-type variational principles. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
基金funded by the Science and Technology Innovation 2030-Key Project of“New Generation Artificial Intelligence”,China(No.2020AAA0108200)the National Natural Science Foundation of China(No.61906209)。
文摘Multi-Target Tracking Guidance(MTTG)in unknown environments has great potential values in applications for Unmanned Aerial Vehicle(UAV)swarms.Although Multi-Agent Deep Reinforcement Learning(MADRL)is a promising technique for learning cooperation,most of the existing methods cannot scale well to decentralized UAV swarms due to their computational complexity or global information requirement.This paper proposes a decentralized MADRL method using the maximum reciprocal reward to learn cooperative tracking policies for UAV swarms.This method reshapes each UAV’s reward with a regularization term that is defined as the dot product of the reward vector of all neighbor UAVs and the corresponding dependency vector between the UAV and the neighbors.And the dependence between UAVs can be directly captured by the Pointwise Mutual Information(PMI)neural network without complicated aggregation statistics.Then,the experience sharing Reciprocal Reward Multi-Agent Actor-Critic(MAAC-R)algorithm is proposed to learn the cooperative sharing policy for all homogeneous UAVs.Experiments demonstrate that the proposed algorithm can improve the UAVs’cooperation more effectively than the baseline algorithms,and can stimulate a rich form of cooperative tracking behaviors of UAV swarms.Besides,the learned policy can better scale to other scenarios with more UAVs and targets.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest, China (No. 201303103)the National Key Research and Development Program, China (No. 2016YFD0200105)the Innovative Group Grant of the National Natural Science Foundation of China (No. 31121062)
文摘Better understanding of the factors that influence crop nitrogen(N) requirement plays an important role in improving regional N recommendations for rice(Oryza sativa L.) production. We collected data from 1 280 plot-level measurements in different reaches of the Yangtze River, China to determine which factors contributed to variability in N requirement in rice. Yield, variety, and cropping system were significantly related to N requirement. The N requirement remained consistent at about 18.6 kg N Mg^(-1)grain as grain yield increased from 7 to 9 Mg ha^(-1), then decreased to 18.1, 16.9, and 15.9 kg N Mg^(-1)grain as yield increased to 9–10, 10–11, and > 11 Mg ha^(-1), respectively. The decreased requirement for N with increasing yield was attributable to declining N concentrations in grain and straw and increased harvest index. Super rice variety had lower N requirement(17.7 kg N Mg^(-1)grain) than ordinary inbred and hybrid varieties(18.5 and 18.3 kg N Mg^(-1)grain, respectively), which was a result of lower grain and straw N concentrations of super rice. The N requirements were 19.2, 17.8, and 17.5 kg N Mg^(-1)grain for early, middle, and late rice cropping systems, respectively. In conclusion, the rice N requirement was affected by multiple factors, including yield, variety, and cropping system, all of which should be considered when planning for optimal N management.
基金This project is supported by National Natural Science Foundation of China(No.50075074).
文摘The instantaneous kinematics of a special 3-UPU parallel platform manipulator is discussed. First, the instantaneous motions of the 3-UPU manipulator in four kinds of positions and a special manipulator are studied by reciprocal screw theory. Then, the principal screws in one of four positions are obtained. It is shown that the moving platform has five degrees of freedom (DOF) in the initial position or after a translation along the z-axis; In the generic position, the mechanism only has three DOF, moreover the three DOF characteristics are different in different position. The instantaneous kinematic characteristics of alike 3-UPU mechanisms are very different in different position and special structure. The results presented are important to the use of alike 3-UPU parallel manipulator and contribute to the mechanism theory .
文摘Reciprocity may be understood as relation of action and reaction in the sense of Hegel’s philosophical definition. Quoting Kant, freedom and ethical necessities are reciprocally limited. In this contribution, a more mathematical than philosophical reflection about reciprocity as an ever-present dual property of everything was given. As a crystallographer, the author is familiar with the action of Fourier transforms and the relation between a crystal lattice and its reciprocal lattice, already pointing to the duality between particles and waves. A generalization of the reciprocity term was stimulated by results of the famous Information Relativity (IR) theory of Suleiman with its proven physical manifestation of matter-wave duality, compared to the set-theoretical E-Infinity theory developed by El Naschie, where the zero set represents the pre-quantum particle, and the pre-quantum wave is assigned to the empty set boundary surrounding the pre-particle. Expectedly, the most irrational number of the golden mean is involved in these thoughts, because this number is intimately connected with its inverse. An important role plays further Hardy’s maximum quantum entanglement probability as the fifth power of φand its connection to the dark matter. Remembering, the eleven dimensions in Witten’s M-theory may be decomposed into the Lucas number L5 = 11 = φ−5 – φ5. Reciprocity is indeed omnipresent in our world as piloting waves that accompany all observable earthen and cosmic matter. As a side effect of the IR theory some fundamental constants such as the gyromagnetic factor of the electron, Sommerfeld’s fine-structure constant as well as the charge of the electron must be marginally changed caused by altered relativistic corrections. Consequences also arise for our vision about the evolution of life and consciousness.