Chronic hepatitis B(CHB)infection is a major public health problem associated with significant morbidity and mortality worldwide.Twenty-three percent of patients with CHB progress naturally to liver cirrhosis,which wa...Chronic hepatitis B(CHB)infection is a major public health problem associated with significant morbidity and mortality worldwide.Twenty-three percent of patients with CHB progress naturally to liver cirrhosis,which was earlier thought to be irreversible.However,it is now known that cirrhosis can in fact be reversed by treatment with oral anti-nucleotide drugs.Thus,early and accurate diagnosis of cirrhosis is important to allow an appropriate treatment strategy to be chosen and to predict the prognosis of patients with CHB.Liver biopsy is the reference standard for assessment of liver fibrosis.However,the method is invasive,and is associated with pain and complications that can be fatal.In addition,intra-and inter-observer variability compromises the accuracy of liver biopsy data.Only small tissue samples are obtained and fibrosis is heterogeneous in such samples.This confounds the two types of observer variability mentioned above.Such limitations have encouraged development of non-invasive methods for assessment of fibrosis.These include measurements of serum biomarkers of fibrosis;and assessment of liver stiffness via transient elastography,acoustic radiation force impulse imaging,real-time elastography,or magnetic resonance elastography.Although significant advances have been made,most work to date has addressed the diagnostic utility of these techniques in the context of cirrhosis caused by chronic hepatitis C infection.In the present review,we examine the advantages afforded by use of non-invasive methods to diagnose cirrhosis in patients with CHB infections and the utility of such methods in clinical practice.展开更多
To compare the grain yield and growth behaviors of hybrid rice, field experiments were conducted in a subtropical environment in Changsha, Hunan Province, China, and in two tropical environments in Gazipur and Habigan...To compare the grain yield and growth behaviors of hybrid rice, field experiments were conducted in a subtropical environment in Changsha, Hunan Province, China, and in two tropical environments in Gazipur and Habiganj in Bangladesh during 2009 to 2011. Three hybrid rice cultivars were grown under three nitrogen (N) management treatments in each experiment. The results showed that grain yield was significantly affected by locations, N treatments and their interaction but not by cultivars. Changsha produced 8-58% higher grain yields than Bangladesh locations. Sink size (spikelet number per unit land area) was responsible for these yield differences. Larger panicle size (spikelet number per panicle) contributed to greater sink size in Changsha. Aboveground total biomass was greater in Changsha than in Bangladesh locations, whereas harvest index was higher in Bangladesh locations than in Changsha. Crop growth rate (CGR) was greater at Changsha than Bangladesh locations during vegetative phase, while the difference was relatively small and not consistent during the later growth phases. Higher leaf area index and leaf area duration were partly responsible for the greater CGR in Changsha. Real-time N management (RTNM) produced lower grain yields than fixed-time N management in more than half of the experiments. Our study suggested that further improvement in rice yield in the tropical environments similar to those of Bangladesh will depend mainly on the ability to increase panicle size as well as CGR during vegetative phase, and the chlorophyll meter threshold value used in RTNM needs to be modified according to environmental conditions and cultivar characteristics to achieve a desirable grain yield.展开更多
基金Supported by A grant of the South Korea Healthcare technology R and D projectMinistry of Health and Welfare+1 种基金South KoreaNo.HI10C2020
文摘Chronic hepatitis B(CHB)infection is a major public health problem associated with significant morbidity and mortality worldwide.Twenty-three percent of patients with CHB progress naturally to liver cirrhosis,which was earlier thought to be irreversible.However,it is now known that cirrhosis can in fact be reversed by treatment with oral anti-nucleotide drugs.Thus,early and accurate diagnosis of cirrhosis is important to allow an appropriate treatment strategy to be chosen and to predict the prognosis of patients with CHB.Liver biopsy is the reference standard for assessment of liver fibrosis.However,the method is invasive,and is associated with pain and complications that can be fatal.In addition,intra-and inter-observer variability compromises the accuracy of liver biopsy data.Only small tissue samples are obtained and fibrosis is heterogeneous in such samples.This confounds the two types of observer variability mentioned above.Such limitations have encouraged development of non-invasive methods for assessment of fibrosis.These include measurements of serum biomarkers of fibrosis;and assessment of liver stiffness via transient elastography,acoustic radiation force impulse imaging,real-time elastography,or magnetic resonance elastography.Although significant advances have been made,most work to date has addressed the diagnostic utility of these techniques in the context of cirrhosis caused by chronic hepatitis C infection.In the present review,we examine the advantages afforded by use of non-invasive methods to diagnose cirrhosis in patients with CHB infections and the utility of such methods in clinical practice.
基金supported by the National Basic Research Program of China (2009CB118603)the Green Super Rice (GSR) Project from the International Rice Research Institute (IRRI) for South Asia+1 种基金Project was completed through the generous cooperation of Hunan Agricultural University, Changsha, Hunan, Chinathe Bangladesh Rice Research Institute (BRRI)
文摘To compare the grain yield and growth behaviors of hybrid rice, field experiments were conducted in a subtropical environment in Changsha, Hunan Province, China, and in two tropical environments in Gazipur and Habiganj in Bangladesh during 2009 to 2011. Three hybrid rice cultivars were grown under three nitrogen (N) management treatments in each experiment. The results showed that grain yield was significantly affected by locations, N treatments and their interaction but not by cultivars. Changsha produced 8-58% higher grain yields than Bangladesh locations. Sink size (spikelet number per unit land area) was responsible for these yield differences. Larger panicle size (spikelet number per panicle) contributed to greater sink size in Changsha. Aboveground total biomass was greater in Changsha than in Bangladesh locations, whereas harvest index was higher in Bangladesh locations than in Changsha. Crop growth rate (CGR) was greater at Changsha than Bangladesh locations during vegetative phase, while the difference was relatively small and not consistent during the later growth phases. Higher leaf area index and leaf area duration were partly responsible for the greater CGR in Changsha. Real-time N management (RTNM) produced lower grain yields than fixed-time N management in more than half of the experiments. Our study suggested that further improvement in rice yield in the tropical environments similar to those of Bangladesh will depend mainly on the ability to increase panicle size as well as CGR during vegetative phase, and the chlorophyll meter threshold value used in RTNM needs to be modified according to environmental conditions and cultivar characteristics to achieve a desirable grain yield.