Recently, compressive tracking (CT) has been widely proposed for its efficiency, accuracy and robustness on many challenging sequences. Its appearance model employs non-adaptive random projections that preserve the ...Recently, compressive tracking (CT) has been widely proposed for its efficiency, accuracy and robustness on many challenging sequences. Its appearance model employs non-adaptive random projections that preserve the structure of the image feature space. A very sparse measurement matrix is used to extract features by multiplying it with the feature vector of the image patch. An adaptive Bayes classifier is trained using both positive samples and negative samples to separate the target from background. On the CT frame- work, however, some features used for classification have weak discriminative abilities, which reduces the accuracy of the strong classifier. In this paper, we present an online compressive feature selection algorithm(CFS) based on the CT framework. It selects the features which have the largest margin when using them to classify positive samples and negative samples. For features that are not selected, we define a random learning rate to update them slowly, It makes those weak classifiers preserve more target information, which relieves the drift when the appearance of the target changes heavily. Therefore, the classifier trained with those discriminative features couples its score in many challenging sequences, which leads to a more robust tracker. Numerous experiments show that our tracker could achieve superior result beyond many state-of-the-art trackers.展开更多
针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失...针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失函数中的均方误差(mean square error,MSE)部分进行变化,从而得到更精确的检测框;其次,将网络结构中的RestNet进行优化,改变下采样区域,增加池化层,进而减少特征信息的丢失;最后将检测结果输入SORT算法进行建模和匹配。实验结果表明,在室外街道的场景下,改进的算法与YOLOv3相比较,损失值收敛更快,平均准确率高出4.85%,跟踪准确率上升3.4%,同时,模型的速度有所提高,最快可达14.39 FPS。展开更多
文摘Recently, compressive tracking (CT) has been widely proposed for its efficiency, accuracy and robustness on many challenging sequences. Its appearance model employs non-adaptive random projections that preserve the structure of the image feature space. A very sparse measurement matrix is used to extract features by multiplying it with the feature vector of the image patch. An adaptive Bayes classifier is trained using both positive samples and negative samples to separate the target from background. On the CT frame- work, however, some features used for classification have weak discriminative abilities, which reduces the accuracy of the strong classifier. In this paper, we present an online compressive feature selection algorithm(CFS) based on the CT framework. It selects the features which have the largest margin when using them to classify positive samples and negative samples. For features that are not selected, we define a random learning rate to update them slowly, It makes those weak classifiers preserve more target information, which relieves the drift when the appearance of the target changes heavily. Therefore, the classifier trained with those discriminative features couples its score in many challenging sequences, which leads to a more robust tracker. Numerous experiments show that our tracker could achieve superior result beyond many state-of-the-art trackers.
文摘针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失函数中的均方误差(mean square error,MSE)部分进行变化,从而得到更精确的检测框;其次,将网络结构中的RestNet进行优化,改变下采样区域,增加池化层,进而减少特征信息的丢失;最后将检测结果输入SORT算法进行建模和匹配。实验结果表明,在室外街道的场景下,改进的算法与YOLOv3相比较,损失值收敛更快,平均准确率高出4.85%,跟踪准确率上升3.4%,同时,模型的速度有所提高,最快可达14.39 FPS。