This paper investigates a control and protection strategy for a four-terminal modular multilevel converter(MMC)based high-voltage direct current(HVDC)system under a converter-side AC fault.Based on the system operatin...This paper investigates a control and protection strategy for a four-terminal modular multilevel converter(MMC)based high-voltage direct current(HVDC)system under a converter-side AC fault.Based on the system operating condition,a control and protection strategy against the fault with normal blocking of the converter is proposed.In practical,applications encountering such a fault,the MMC at the fault side may experience different conditions of blocking failure.The blocking failures may occur on:①the whole converter;②one converter arm;③one sub-module(SM)/several SMs of one converter arm;④other conditions.The phenomenon of the multi-terminal HVDC(MTDC)system following the fault is analyzed under the first three conditions with real-time simulations using the real-time digital simulator(RTDS).Based on the impact of different conditions on the MTDC system,the necessity of utilizing special control and protection is discussed.A special control and protection strategy is proposed for emergency conditions,and its effectiveness is verified by real-time simulation results.展开更多
AIM:To develop a novel 3-dimensional(3D) virtual hepatectomy simulation software,Liversim,to visualize the real-time deformation of the liver.METHODS:We developed a novel real-time virtual hepatectomy simulation softw...AIM:To develop a novel 3-dimensional(3D) virtual hepatectomy simulation software,Liversim,to visualize the real-time deformation of the liver.METHODS:We developed a novel real-time virtual hepatectomy simulation software program called Liversim. The software provides 4 basic functions:viewing 3D models from arbitrary directions,changing the colors and opacities of the models,deforming the models based on user interaction,and incising the liver parenchyma and intrahepatic vessels based on user operations. From April 2010 through 2013,99 patients underwent virtual hepatectomies that used the conventional software program SYNAPSE VINCENT preoperatively. Between April 2012 and October 2013,11 patients received virtual hepatectomies using the novel software program Liversim; these hepatectomies were performed both preoperatively and at the same that the actual hepatectomy was performed in an operating room. The perioperative outcomes were analyzed between the patients for whom SYNAPSE VINCENT was used and those for whom Liversim wasused. Furthermore,medical students and surgical residents were asked to complete questionnaires regarding the new software.RESULTS:There were no obvious discrepancies(i.e.,the emergence of branches in the portal vein or hepatic vein or the depth and direction of the resection line) between our simulation and the actual surgery during the resection process. The median operating time was 304 min(range,110 to 846) in the VINCENT group and 397 min(range,232 to 497) in the Liversim group(P = 0.30). The median amount of intraoperative bleeding was 510 m L(range,18 to 5120) in the VINCENT group and 470 m L(range,130 to 1600) in the Liversim group(P = 0.44). The median postoperative stay was 12 d(range,6 to 100) in the VINCENT group and 13 d(range,9 to 21) in the Liversim group(P = 0.36). There were no significant differences in the preoperative outcomes between the two groups. Liversim was not found to be clinically inferior to SYNAPSE VINCENT. Both students and surgical residents reported that th展开更多
A complete scheme for solving the key scientific problems associated with high-standard,high-intensity continuous construction of high arch dams was presented. First,based on a coupling analysis of construction system...A complete scheme for solving the key scientific problems associated with high-standard,high-intensity continuous construction of high arch dams was presented. First,based on a coupling analysis of construction system decomposition and coordination for a high arc dam,a mathematical model for real-time control of construction quality and progress that considers complex constraints was developed. Second,a method of progress control was proposed based on a dynamic simulation. Third,a dynamic quality control mechanism was established based on construction information collected using a PDA. Fourth,a system for integrating collected information,progress simulation and quality control analyses under a network environment was developed. Finally,these methods were applied to a practical project to show that each aspect of a construction process can be managed effectively and that real-time monitoring and feedback control can be realized. Our methods provide new theoretical principles and technical measures for quality and progress control in the high arc dam construction process.展开更多
基金This work is supported by UK EPSRC and UK National Grid.
文摘This paper investigates a control and protection strategy for a four-terminal modular multilevel converter(MMC)based high-voltage direct current(HVDC)system under a converter-side AC fault.Based on the system operating condition,a control and protection strategy against the fault with normal blocking of the converter is proposed.In practical,applications encountering such a fault,the MMC at the fault side may experience different conditions of blocking failure.The blocking failures may occur on:①the whole converter;②one converter arm;③one sub-module(SM)/several SMs of one converter arm;④other conditions.The phenomenon of the multi-terminal HVDC(MTDC)system following the fault is analyzed under the first three conditions with real-time simulations using the real-time digital simulator(RTDS).Based on the impact of different conditions on the MTDC system,the necessity of utilizing special control and protection is discussed.A special control and protection strategy is proposed for emergency conditions,and its effectiveness is verified by real-time simulation results.
文摘AIM:To develop a novel 3-dimensional(3D) virtual hepatectomy simulation software,Liversim,to visualize the real-time deformation of the liver.METHODS:We developed a novel real-time virtual hepatectomy simulation software program called Liversim. The software provides 4 basic functions:viewing 3D models from arbitrary directions,changing the colors and opacities of the models,deforming the models based on user interaction,and incising the liver parenchyma and intrahepatic vessels based on user operations. From April 2010 through 2013,99 patients underwent virtual hepatectomies that used the conventional software program SYNAPSE VINCENT preoperatively. Between April 2012 and October 2013,11 patients received virtual hepatectomies using the novel software program Liversim; these hepatectomies were performed both preoperatively and at the same that the actual hepatectomy was performed in an operating room. The perioperative outcomes were analyzed between the patients for whom SYNAPSE VINCENT was used and those for whom Liversim wasused. Furthermore,medical students and surgical residents were asked to complete questionnaires regarding the new software.RESULTS:There were no obvious discrepancies(i.e.,the emergence of branches in the portal vein or hepatic vein or the depth and direction of the resection line) between our simulation and the actual surgery during the resection process. The median operating time was 304 min(range,110 to 846) in the VINCENT group and 397 min(range,232 to 497) in the Liversim group(P = 0.30). The median amount of intraoperative bleeding was 510 m L(range,18 to 5120) in the VINCENT group and 470 m L(range,130 to 1600) in the Liversim group(P = 0.44). The median postoperative stay was 12 d(range,6 to 100) in the VINCENT group and 13 d(range,9 to 21) in the Liversim group(P = 0.36). There were no significant differences in the preoperative outcomes between the two groups. Liversim was not found to be clinically inferior to SYNAPSE VINCENT. Both students and surgical residents reported that th
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2007CB714101)the National Key Technology R&D Program in the11th Five-year Plan of China(Grant No.2008BAB29B0501)the National Natural Science Foundation of China(Grant No.90815019)
文摘A complete scheme for solving the key scientific problems associated with high-standard,high-intensity continuous construction of high arch dams was presented. First,based on a coupling analysis of construction system decomposition and coordination for a high arc dam,a mathematical model for real-time control of construction quality and progress that considers complex constraints was developed. Second,a method of progress control was proposed based on a dynamic simulation. Third,a dynamic quality control mechanism was established based on construction information collected using a PDA. Fourth,a system for integrating collected information,progress simulation and quality control analyses under a network environment was developed. Finally,these methods were applied to a practical project to show that each aspect of a construction process can be managed effectively and that real-time monitoring and feedback control can be realized. Our methods provide new theoretical principles and technical measures for quality and progress control in the high arc dam construction process.