Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling c...Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y203), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr207 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAI11019 (R=La, Nd; Me=Mg, Ca, Sr) and LAP04. The concept of double-ceramic- layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.展开更多
The improvement of hydrogen storage materials is a key issue for storage and delivery of hydrogen energy before its potential can be realized. As hydrogen storage media, rare-earth hydrogen storage materials have been...The improvement of hydrogen storage materials is a key issue for storage and delivery of hydrogen energy before its potential can be realized. As hydrogen storage media, rare-earth hydrogen storage materials have been systematically studied in order to improve storage capacity, kinetics, thermodynamics and electrochemical performance. In this review, we focus on recent research progress of gaseous sorption and electrochemical hydrogen storage properties of rare-earth alloys and highlight their commercial applications including hydrogen storage tanks and nickel metal hydride batteries. Furthermore, development trend and prospective of rare-earth hydrogen storage materials are discussed.展开更多
We investigated the effect of calcination temperature, reaction temperature, and different amounts of replenished lattice oxygen on the partial oxidation of methane (POM) to synthesis gas using perovskite-type LaFeO...We investigated the effect of calcination temperature, reaction temperature, and different amounts of replenished lattice oxygen on the partial oxidation of methane (POM) to synthesis gas using perovskite-type LaFeO3 oxide as oxygen donor instead of gaseous oxygen, which was prepared by the sol-gel method, and the oxides were characterized by XRD, TG/DTA, and BET. The results indicated that the particle size increased with the calcination temperature increasing, while BET and CH4 conversion declined with the calcination temperature increasing using LaFeO3 oxide as oxygen donor in the absence of gaseous oxygen. CO selectivity remained at a high level such as above 92%, and increased slightly as the calcination temperature increased. Exposure of LaFeO3 oxides to methane atmosphere enhanced the oxygen migration of in the bulk with time online owing to the loss of lattice oxygen and reduction of the oxidative stated Fe ion simultaneously, The high reaction temperature was favorable to the migration of oxygen species from the bulk toward the surface for the synthesis gas production with high CO selectivity. The product distribution and evolution for POM by sequential redox reaction was determined by amounts of replenished lattice oxygen with gaseous oxygen. The optimal process should decline the total oxidation of methane, and increase the selectivity of partial oxidation of methane.展开更多
The CO_2 sensing of PrFeO_3 and NdFeO_3 sensors were investigated. Experimental results show that the resistances for PrFeO_3 and NdFeO_3 in CO_2 gas are larger than those in air and the responses for PrFeO_3and NdFeO...The CO_2 sensing of PrFeO_3 and NdFeO_3 sensors were investigated. Experimental results show that the resistances for PrFeO_3 and NdFeO_3 in CO_2 gas are larger than those in air and the responses for PrFeO_3and NdFeO_3 sensors increase with an increase in room-temperature relative humidity. When exposed to1000 ppm CO_2, the response of PrFeO_3 thick film based on nano-powders annealed at 700℃can reach8.44 at 160℃for the background of wet air with 58%of room-temperature relative humidity (RH),which is much larger than the corresponding value (3.03) in wet air with 25%RH. The sensing response S of NdFeO_3 thick-film sensor based on nano-powders annealed at 600℃to 3000 ppm CO_2 at the operating temperature 200℃can reach 2.36 for the background of wet air with 72%RH, which is larger than the corresponding value (1.83) in the air with 25%RH. Compared with other CO_2 sensing materials, the PrFeO_3 sensor has larger response at lower operating temperature for CO_2 gas and may be used as a new CO_2 sensing material.展开更多
C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making...C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making such products, such as acetic acid, dimethyl ether, and alcohol. Catalytic syngas processing is currently done at high temperatures and pressures, conditions that could be unfavorable for the life of the catalyst. Another issue of C1 chemistry is related to the methane-initiated process. It has been known that direct methane conversions are still suffering from low yields and selectivity of products resulting in unprofitable ways to produce products, such as higher hydrocarbons, methanol, and so on. However, many experts and researchers are still trying to find the best method to overcome these barriers, for example, by finding the best catalyst to reduce the high-energy barrier of the reactions and conduct only selective catalyst-surface reactions. The appli- cation of Yttria-Stabilized Zirconia (YSZ) and its combination with other metals for catalyzing purposes are increasing. The existence of an interesting site that acts as oxygen store could be the main reason for it. Moreover, formation of intermediate species on the surface of YSZ also contributes significantly in increasing the production of some specific products. Understanding the phenomena happening inside could be necessary. In this article, the use of YSZ for some C1 chemistry reactions was discussed and reviewed.展开更多
Cerium oxide(CeO_(2)),or ceria,and its doped derivatives have been extensively studied for several decades and are well-known oxides valued for their unique structural properties and wide range of applications.These m...Cerium oxide(CeO_(2)),or ceria,and its doped derivatives have been extensively studied for several decades and are well-known oxides valued for their unique structural properties and wide range of applications.These materials play a crucial role in sustainable development within society.Structural modification through de fect e ngineering of the highly stable cubic fluorite phase enhances the versatility of this doped ceria to a new level.Among the numerous dopants of the CeO_(2)matrix,ceria doped with gadolinium(Gd),known as Ce_(1-x)Gd_(x)O_(2-■)(CGO),is gaining popularity due to its multifunctionality.The introduction of defect-induced vacancies in the oxygen sublattice(V_(o))and a change in the average valence of cerium(Ce^(3+)/Ce^(4+))are primarily responsible for the improved performance compared to pristine CeO_(2).These materials are currently undergoing intensive research for potential use as electrolytes in intermediate-temperature solid oxide fuel cells(IT-SOFCs)and dense oxygen-permeable membranes(OPMs).Additionally,they are being commercially utilized for power generation and oxygen separation.CGO materials are also attracting significant attention in various fields such as optics,photocatalysis,electrostriction,spintronics,gas sensing,electrocatalysis,and biomedical applications.This review paper aims to compile the latest contributions to CGO materials and comprehensively cover their various application areas.The crystal structure,defect equilibrium in Gd^(3+)-doped CeO_(2),the origin of multifunctionality,and the prospects of these materials are also exclusively discussed.展开更多
文摘Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y203), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr207 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAI11019 (R=La, Nd; Me=Mg, Ca, Sr) and LAP04. The concept of double-ceramic- layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.
基金supported by the National Natural Science Foundation of China(Grant No.21521092)the Major Scientific and Technological Developing Project of Changchun City(Grant No.17SS013)+1 种基金the Scientific and Technological Developing Project of Jilin Province(Grant No.20180201098GX)the Natural Science Foundation of Jiangsu Province(Grant No.BK20141174)
文摘The improvement of hydrogen storage materials is a key issue for storage and delivery of hydrogen energy before its potential can be realized. As hydrogen storage media, rare-earth hydrogen storage materials have been systematically studied in order to improve storage capacity, kinetics, thermodynamics and electrochemical performance. In this review, we focus on recent research progress of gaseous sorption and electrochemical hydrogen storage properties of rare-earth alloys and highlight their commercial applications including hydrogen storage tanks and nickel metal hydride batteries. Furthermore, development trend and prospective of rare-earth hydrogen storage materials are discussed.
基金the National Natural Science Foundation of China (20306016, 20322201)
文摘We investigated the effect of calcination temperature, reaction temperature, and different amounts of replenished lattice oxygen on the partial oxidation of methane (POM) to synthesis gas using perovskite-type LaFeO3 oxide as oxygen donor instead of gaseous oxygen, which was prepared by the sol-gel method, and the oxides were characterized by XRD, TG/DTA, and BET. The results indicated that the particle size increased with the calcination temperature increasing, while BET and CH4 conversion declined with the calcination temperature increasing using LaFeO3 oxide as oxygen donor in the absence of gaseous oxygen. CO selectivity remained at a high level such as above 92%, and increased slightly as the calcination temperature increased. Exposure of LaFeO3 oxides to methane atmosphere enhanced the oxygen migration of in the bulk with time online owing to the loss of lattice oxygen and reduction of the oxidative stated Fe ion simultaneously, The high reaction temperature was favorable to the migration of oxygen species from the bulk toward the surface for the synthesis gas production with high CO selectivity. The product distribution and evolution for POM by sequential redox reaction was determined by amounts of replenished lattice oxygen with gaseous oxygen. The optimal process should decline the total oxidation of methane, and increase the selectivity of partial oxidation of methane.
基金supported by National Natural Science Foundation of China(51272133,51472145,51772174 and 51472150)Shandong Natural Science Foundation(ZR2016EMM20)
文摘The CO_2 sensing of PrFeO_3 and NdFeO_3 sensors were investigated. Experimental results show that the resistances for PrFeO_3 and NdFeO_3 in CO_2 gas are larger than those in air and the responses for PrFeO_3and NdFeO_3 sensors increase with an increase in room-temperature relative humidity. When exposed to1000 ppm CO_2, the response of PrFeO_3 thick film based on nano-powders annealed at 700℃can reach8.44 at 160℃for the background of wet air with 58%of room-temperature relative humidity (RH),which is much larger than the corresponding value (3.03) in wet air with 25%RH. The sensing response S of NdFeO_3 thick-film sensor based on nano-powders annealed at 600℃to 3000 ppm CO_2 at the operating temperature 200℃can reach 2.36 for the background of wet air with 72%RH, which is larger than the corresponding value (1.83) in the air with 25%RH. Compared with other CO_2 sensing materials, the PrFeO_3 sensor has larger response at lower operating temperature for CO_2 gas and may be used as a new CO_2 sensing material.
基金Project supported by the Global R&D Program of the Korea Foundation for International Cooperation of Science and Technology (KICOS)
文摘C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making such products, such as acetic acid, dimethyl ether, and alcohol. Catalytic syngas processing is currently done at high temperatures and pressures, conditions that could be unfavorable for the life of the catalyst. Another issue of C1 chemistry is related to the methane-initiated process. It has been known that direct methane conversions are still suffering from low yields and selectivity of products resulting in unprofitable ways to produce products, such as higher hydrocarbons, methanol, and so on. However, many experts and researchers are still trying to find the best method to overcome these barriers, for example, by finding the best catalyst to reduce the high-energy barrier of the reactions and conduct only selective catalyst-surface reactions. The appli- cation of Yttria-Stabilized Zirconia (YSZ) and its combination with other metals for catalyzing purposes are increasing. The existence of an interesting site that acts as oxygen store could be the main reason for it. Moreover, formation of intermediate species on the surface of YSZ also contributes significantly in increasing the production of some specific products. Understanding the phenomena happening inside could be necessary. In this article, the use of YSZ for some C1 chemistry reactions was discussed and reviewed.
基金Project supported by the Indian Council of Medical Research(#5/3/8/30/ITR-f/2018-ITR)National Research Foundation of Korea(RS-2023-00278268)。
文摘Cerium oxide(CeO_(2)),or ceria,and its doped derivatives have been extensively studied for several decades and are well-known oxides valued for their unique structural properties and wide range of applications.These materials play a crucial role in sustainable development within society.Structural modification through de fect e ngineering of the highly stable cubic fluorite phase enhances the versatility of this doped ceria to a new level.Among the numerous dopants of the CeO_(2)matrix,ceria doped with gadolinium(Gd),known as Ce_(1-x)Gd_(x)O_(2-■)(CGO),is gaining popularity due to its multifunctionality.The introduction of defect-induced vacancies in the oxygen sublattice(V_(o))and a change in the average valence of cerium(Ce^(3+)/Ce^(4+))are primarily responsible for the improved performance compared to pristine CeO_(2).These materials are currently undergoing intensive research for potential use as electrolytes in intermediate-temperature solid oxide fuel cells(IT-SOFCs)and dense oxygen-permeable membranes(OPMs).Additionally,they are being commercially utilized for power generation and oxygen separation.CGO materials are also attracting significant attention in various fields such as optics,photocatalysis,electrostriction,spintronics,gas sensing,electrocatalysis,and biomedical applications.This review paper aims to compile the latest contributions to CGO materials and comprehensively cover their various application areas.The crystal structure,defect equilibrium in Gd^(3+)-doped CeO_(2),the origin of multifunctionality,and the prospects of these materials are also exclusively discussed.