为研究数字电视节目推荐系统不同统计算法的性能,提出利用Rankboost排序算法、Bayes统计算法和简单统计算法三种基于统计模型的算法实现数字电视用户特征的提取与节目推荐。应用实际数字电视运营平台20名用户的测试数据表明,Rankboost...为研究数字电视节目推荐系统不同统计算法的性能,提出利用Rankboost排序算法、Bayes统计算法和简单统计算法三种基于统计模型的算法实现数字电视用户特征的提取与节目推荐。应用实际数字电视运营平台20名用户的测试数据表明,Rankboost算法、Bayes统计算法、简单统计算法排序的AUC(Area Under Curve)值分别为0.732、0.6222和0.6058。分析及测试表明,Rankboost算法因考虑了多重特征在排序中的不同作用,因此在数字电视节目推荐中具有较高的推荐性能。展开更多
文摘为研究数字电视节目推荐系统不同统计算法的性能,提出利用Rankboost排序算法、Bayes统计算法和简单统计算法三种基于统计模型的算法实现数字电视用户特征的提取与节目推荐。应用实际数字电视运营平台20名用户的测试数据表明,Rankboost算法、Bayes统计算法、简单统计算法排序的AUC(Area Under Curve)值分别为0.732、0.6222和0.6058。分析及测试表明,Rankboost算法因考虑了多重特征在排序中的不同作用,因此在数字电视节目推荐中具有较高的推荐性能。