This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to reali...This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.展开更多
In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the c...In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the corresponding theorems of Stout [1], Thrum [2] and Hu et al. [3].展开更多
A full-open-cavity wavelength-tunable random fiber laser(WT-RFL) with compact structure and hundreds of picometers tuning range is proposed and demonstrated. A π fiber Bragg grating(FBG) is used in the WT-RFL as a fi...A full-open-cavity wavelength-tunable random fiber laser(WT-RFL) with compact structure and hundreds of picometers tuning range is proposed and demonstrated. A π fiber Bragg grating(FBG) is used in the WT-RFL as a filter to select lasing wavelengths. The two random Bragg grating arrays(RBGAs) and a section of high gain erbium-doped fiber result in a low lasing threshold and high stability. A numerical model to analyze the tunable characteristics is developed. The results show that the laser threshold is 22 m W, and the maximum peak-power fluctuation is 0.55 d B. To the best of our knowledge, it is the first time that a compact and full-open-cavity WT-RFL with two RBGAs and a π-FBG is proposed.展开更多
Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve...Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.展开更多
In order to solve the problem of the sensor location uncertainty for a towed line array, the sample matrix of the signal and time-space curve equations of the simulated array shape are presented in this paper. Average...In order to solve the problem of the sensor location uncertainty for a towed line array, the sample matrix of the signal and time-space curve equations of the simulated array shape are presented in this paper. Average beampatterns of randomized processing are given too . The quantitative results of array shape variation and distortion losses are obtained from the comparison between the computer simulation and the experimental results. In addition, a model for estimating array shape is offered. An experiment on dynamical beamforming is carried out. The results show that SNR improvement of about 4dB may be obtained by dynamic compensation for a small array when the distortion is medial and the tow speed is low.展开更多
Rosenthal inequality for NOD (negatively' orthant dependent) random variable sequences is established. As its applications, two theorems of complete convergence of weighted sums for arrays of NOD random variables a...Rosenthal inequality for NOD (negatively' orthant dependent) random variable sequences is established. As its applications, two theorems of complete convergence of weighted sums for arrays of NOD random variables are given, which extend the corresponding known results.展开更多
Based on the problem that the generating method of random array structure is inefficient, a method is proposed to generate the random target arrays by using coaxial circu- lar array in the polar coordinates in the pre...Based on the problem that the generating method of random array structure is inefficient, a method is proposed to generate the random target arrays by using coaxial circu- lar array in the polar coordinates in the premise that the array angular resolution of source identification is guaranteed. According to the principle of moving sound source identification, this work deduces the basic non-equidistance coaxial circular rings' radius, and generates target random arrays which were suitable for moving sound source identification through array partitioning, condition filtering in the polar coordinates and simulation evaluation. Finally, numerical simulation and moving car sound source identification test have been done. The analytical results show that using this method to generate random array is effective. Compared with the traditional regular arrays, the target random array has more accurate moving sound source identification performance.展开更多
文摘This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.
文摘In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the corresponding theorems of Stout [1], Thrum [2] and Hu et al. [3].
基金supported by the National Natural Science Foundation of China (NSFC) (Nos. 61875185 and U1939207)the Scientific Instrument Developing Project of the Chinese Academy of Sciences+1 种基金the Strategic Priority Research Program A of the CAS (No. XDA22010201)the Shenzhen Science and Technology Research Funding (No. JCYJ20190814110601663)
文摘A full-open-cavity wavelength-tunable random fiber laser(WT-RFL) with compact structure and hundreds of picometers tuning range is proposed and demonstrated. A π fiber Bragg grating(FBG) is used in the WT-RFL as a filter to select lasing wavelengths. The two random Bragg grating arrays(RBGAs) and a section of high gain erbium-doped fiber result in a low lasing threshold and high stability. A numerical model to analyze the tunable characteristics is developed. The results show that the laser threshold is 22 m W, and the maximum peak-power fluctuation is 0.55 d B. To the best of our knowledge, it is the first time that a compact and full-open-cavity WT-RFL with two RBGAs and a π-FBG is proposed.
基金Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,Shanghai Branch,University of Science and Technology of Chinathe National Natural Science Foundation of China under Grant No 11405172
文摘Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.
文摘In order to solve the problem of the sensor location uncertainty for a towed line array, the sample matrix of the signal and time-space curve equations of the simulated array shape are presented in this paper. Average beampatterns of randomized processing are given too . The quantitative results of array shape variation and distortion losses are obtained from the comparison between the computer simulation and the experimental results. In addition, a model for estimating array shape is offered. An experiment on dynamical beamforming is carried out. The results show that SNR improvement of about 4dB may be obtained by dynamic compensation for a small array when the distortion is medial and the tow speed is low.
基金Supported by the National Natural Science Foundation of China (10671149,60574002)
文摘Rosenthal inequality for NOD (negatively' orthant dependent) random variable sequences is established. As its applications, two theorems of complete convergence of weighted sums for arrays of NOD random variables are given, which extend the corresponding known results.
基金supported by the National Natural Science Foundation of China(61271387)the Natural Science Foundation of Shandong Province(ZR2012FZ001)
文摘Based on the problem that the generating method of random array structure is inefficient, a method is proposed to generate the random target arrays by using coaxial circu- lar array in the polar coordinates in the premise that the array angular resolution of source identification is guaranteed. According to the principle of moving sound source identification, this work deduces the basic non-equidistance coaxial circular rings' radius, and generates target random arrays which were suitable for moving sound source identification through array partitioning, condition filtering in the polar coordinates and simulation evaluation. Finally, numerical simulation and moving car sound source identification test have been done. The analytical results show that using this method to generate random array is effective. Compared with the traditional regular arrays, the target random array has more accurate moving sound source identification performance.