In this paper,the authors propose a method of three-dimensional(3D)magnetotelluric(MT)forward modeling algorithm based on the meshfree and finite element coupling method.The model is discretized by regular nodes in th...In this paper,the authors propose a method of three-dimensional(3D)magnetotelluric(MT)forward modeling algorithm based on the meshfree and finite element coupling method.The model is discretized by regular nodes in the central area,and the radial point interpolation method(RPIM)based on the global weakness is utilized to construct the meshfree shape function.The Governing equations in each background gird are solved by Gaussian integration.In the extended area where the points are sparsely distributed,to avoid the instability of the meshfree method,finite element method(FEM)with regular grids is used to solve the governing equation.Finally,the meshfree and finite element governing equations are coupled by the continuity of the field at the interfaces,and the direct solution technique is used to realize the 3D MT forward modeling.Numerical experiments of several typical electrical models are used to verify the effectiveness of the method.展开更多
In order to overcome the possible singularity associated with the Point Interpolation Method(PIM),the Radial Point Interpolation Method(RPIM)was proposed by G.R.Liu.Radial basis functions(RBF)was used in RPIM as basis...In order to overcome the possible singularity associated with the Point Interpolation Method(PIM),the Radial Point Interpolation Method(RPIM)was proposed by G.R.Liu.Radial basis functions(RBF)was used in RPIM as basis functions for interpolation.All these radial basis functions include shape parameters.The choice of these shape parameters has been and stays a problematic theme in RBF approximation and interpolation theory.The object of this study is to contribute to the analysis of how these shape parameters affect the accuracy of the radial PIM.The RPIM is studied based on the global Galerkin weak form performed using two integration technics:classical Gaussian integration and the strain smoothing integration scheme.The numerical performance of this method is tested on their behavior on curve fitting,and on three elastic mechanical problems with regular or irregular nodes distributions.A range of recommended shape parameters is obtained from the analysis of different error indexes and also the condition number of the matrix system.All resulting RPIM methods perform very well in term of numerical computation.The Smoothed Radial Point Interpolation Method(SRPIM)shows a higher accuracy,especially in a situation of distorted node scheme.展开更多
Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and the...Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and their influences are not fully investigated yet.In this work,three main factors,i.e.,the shape parameters,the influence domain size,and the nodal distribution,on the accuracy of the radial point interpolation method(RPIM)are systematically studied and conclusive results are obtained.First,the effect of shape parameters(R,q)of the multi-quadric basis function on the accuracy of RPIM is examined via global search.A new interpolation error index,closely related to the accuracy of RPIM,is proposed.The distribution of various error indexes on the R q plane shows that shape parameters q[1.2,1.8]and R[0,1.5]can give good results for general 3-D analysis.This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics.Second,through numerical experiments,an average of 30 40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics.Third,it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation.Nodal distributions with better uniformity give better results.Furthermore,how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.展开更多
For many years finite element method(FEM)was the chosen numerical method for the analysis of composite structures.However,in the last 20 years,the scientific community has witnessed the birth and development of severa...For many years finite element method(FEM)was the chosen numerical method for the analysis of composite structures.However,in the last 20 years,the scientific community has witnessed the birth and development of several meshless methods,which are more flexible and equally accurate numerical methods.The meshless method used in this work is the natural neighbour radial point interpolation method(NNRPIM).In order to discretize the problem domain,the NNRPIM only requires an unstructured nodal distribution.Then,using the Voronoi mathematical concept,it enforces the nodal connectivity and constructs the background integration mesh.The NNRPIM shape functions are constructed using the radial point interpolation technique.In this work,the displacement field of composite laminated plates is defined by high-order shear deformation theories.In the end,several antisymmetric cross-ply laminates were analysed and the NNRPIM solutions were compared with the literature.The obtained results show the efficiency and accuracy of the NNRPIM formulation.展开更多
A novel extended traction boundary element-free method is proposed to analyze the crack problems of two-dimensional infinite magnetoelectroelastic solid.An extended traction boundary integral equation only involving C...A novel extended traction boundary element-free method is proposed to analyze the crack problems of two-dimensional infinite magnetoelectroelastic solid.An extended traction boundary integral equation only involving Cauchy singularity is firstly derived.Then,the extended dislocation densities on the crack surface are expressed as the combination of a characteristic term and unknown weight functions,and the radial point interpolation method is adopted to approximate the unknown weight functions.The numerical scheme of the extended traction boundary element-free method is further established,and an effective numerical procedure is used to evaluate the Cauchy singular integrals.Finally,the stress intensity factor,electric displacement intensity factor and magnetic induction intensity factor are computed for some selected crack problems that contain straight,curved and branched cracks,and good numerical results are obtained.At the same time,the fracture properties of these crack problems are discussed.展开更多
基金Supported by Project of National Natural Science Foundation of China(No.42074120).
文摘In this paper,the authors propose a method of three-dimensional(3D)magnetotelluric(MT)forward modeling algorithm based on the meshfree and finite element coupling method.The model is discretized by regular nodes in the central area,and the radial point interpolation method(RPIM)based on the global weakness is utilized to construct the meshfree shape function.The Governing equations in each background gird are solved by Gaussian integration.In the extended area where the points are sparsely distributed,to avoid the instability of the meshfree method,finite element method(FEM)with regular grids is used to solve the governing equation.Finally,the meshfree and finite element governing equations are coupled by the continuity of the field at the interfaces,and the direct solution technique is used to realize the 3D MT forward modeling.Numerical experiments of several typical electrical models are used to verify the effectiveness of the method.
文摘In order to overcome the possible singularity associated with the Point Interpolation Method(PIM),the Radial Point Interpolation Method(RPIM)was proposed by G.R.Liu.Radial basis functions(RBF)was used in RPIM as basis functions for interpolation.All these radial basis functions include shape parameters.The choice of these shape parameters has been and stays a problematic theme in RBF approximation and interpolation theory.The object of this study is to contribute to the analysis of how these shape parameters affect the accuracy of the radial PIM.The RPIM is studied based on the global Galerkin weak form performed using two integration technics:classical Gaussian integration and the strain smoothing integration scheme.The numerical performance of this method is tested on their behavior on curve fitting,and on three elastic mechanical problems with regular or irregular nodes distributions.A range of recommended shape parameters is obtained from the analysis of different error indexes and also the condition number of the matrix system.All resulting RPIM methods perform very well in term of numerical computation.The Smoothed Radial Point Interpolation Method(SRPIM)shows a higher accuracy,especially in a situation of distorted node scheme.
基金Project(2010CB732103)supported by the National Basic Research Program of ChinaProject(51179092)supported by the National Natural Science Foundation of ChinaProject(2012-KY-02)supported by the State Key Laboratory of Hydroscience and Engineering,China
文摘Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and their influences are not fully investigated yet.In this work,three main factors,i.e.,the shape parameters,the influence domain size,and the nodal distribution,on the accuracy of the radial point interpolation method(RPIM)are systematically studied and conclusive results are obtained.First,the effect of shape parameters(R,q)of the multi-quadric basis function on the accuracy of RPIM is examined via global search.A new interpolation error index,closely related to the accuracy of RPIM,is proposed.The distribution of various error indexes on the R q plane shows that shape parameters q[1.2,1.8]and R[0,1.5]can give good results for general 3-D analysis.This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics.Second,through numerical experiments,an average of 30 40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics.Third,it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation.Nodal distributions with better uniformity give better results.Furthermore,how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.
文摘For many years finite element method(FEM)was the chosen numerical method for the analysis of composite structures.However,in the last 20 years,the scientific community has witnessed the birth and development of several meshless methods,which are more flexible and equally accurate numerical methods.The meshless method used in this work is the natural neighbour radial point interpolation method(NNRPIM).In order to discretize the problem domain,the NNRPIM only requires an unstructured nodal distribution.Then,using the Voronoi mathematical concept,it enforces the nodal connectivity and constructs the background integration mesh.The NNRPIM shape functions are constructed using the radial point interpolation technique.In this work,the displacement field of composite laminated plates is defined by high-order shear deformation theories.In the end,several antisymmetric cross-ply laminates were analysed and the NNRPIM solutions were compared with the literature.The obtained results show the efficiency and accuracy of the NNRPIM formulation.
基金supported by the National Natural Science Foundation of China (10772123,11072160)Natural Science Foundation for Outstanding Young People of Hebei Province (A2009001624),China
文摘A novel extended traction boundary element-free method is proposed to analyze the crack problems of two-dimensional infinite magnetoelectroelastic solid.An extended traction boundary integral equation only involving Cauchy singularity is firstly derived.Then,the extended dislocation densities on the crack surface are expressed as the combination of a characteristic term and unknown weight functions,and the radial point interpolation method is adopted to approximate the unknown weight functions.The numerical scheme of the extended traction boundary element-free method is further established,and an effective numerical procedure is used to evaluate the Cauchy singular integrals.Finally,the stress intensity factor,electric displacement intensity factor and magnetic induction intensity factor are computed for some selected crack problems that contain straight,curved and branched cracks,and good numerical results are obtained.At the same time,the fracture properties of these crack problems are discussed.