随着电子商务的不断发展,道路物流交通所面临的压力日益增长,而车路协调技术的出现为缓解这一问题提供了有效的解决方案。其中,高速公路动态限速系统是提升高速公路通行效率的关键技术。为此,针对高速公路匝道口合流区应用提出一种主路...随着电子商务的不断发展,道路物流交通所面临的压力日益增长,而车路协调技术的出现为缓解这一问题提供了有效的解决方案。其中,高速公路动态限速系统是提升高速公路通行效率的关键技术。为此,针对高速公路匝道口合流区应用提出一种主路车辆动态限速方法。该方法通过路侧单元(Road Side Unite,RSU)对高速公路主干路和匝道交通状况进行实时感知,从而控制主路车辆的实时行驶速度,使匝道上车辆以零等待方式顺利进入主路,在确保交通安全的同时提高通行效率。而且,文中方法通过了双向耦合车联网仿真平台的验证。该平台通过对网络仿真器和道路仿真器的双向耦合,使车联网仿真环境更加接近真实场景。实验数据表明,文中所提出方法在实现匝道上车辆零等待时间的前提下,提升了主路车流速度94%以上,降低二氧化碳排放量至少20%。展开更多
5G车辆需要实现五维协同,让未来的车具有更加强大的数据处理能力,使得交通系统更有智慧。车联网和5G结合,将释放巨大能量。5G车联网不仅要实现车路协同,还要实现'人-车-路-网-云'五维高度协同。在人方面,以MaaS(Mobility as a S...5G车辆需要实现五维协同,让未来的车具有更加强大的数据处理能力,使得交通系统更有智慧。车联网和5G结合,将释放巨大能量。5G车联网不仅要实现车路协同,还要实现'人-车-路-网-云'五维高度协同。在人方面,以MaaS(Mobility as a Service,出行即服务)为核心,为消费者提供一站式出行服务,让消费者成为自由的人;在车方面,未来的车不仅是数据发送和接收方,还是计算节点.展开更多
基于路侧感知的可变车道智能网联车路协同系统是将可变车道控制系统与智能网联车路协同系统深度融合组网,其原理是在路口部署路侧感知设备来检测目标路段车流量,在其上游路口部署可变车道交通控制系统,感知设备通过识别当前道路排队长...基于路侧感知的可变车道智能网联车路协同系统是将可变车道控制系统与智能网联车路协同系统深度融合组网,其原理是在路口部署路侧感知设备来检测目标路段车流量,在其上游路口部署可变车道交通控制系统,感知设备通过识别当前道路排队长度和平均车速综合判断当前该段道路是否拥堵,然后通过车路协同系统控制上游可变车道电子标牌允许行驶方向,从而控制目标道路的驶入车流量,达到缓解该路段的交通压力的目的。同时,在车路协同C-V2X(Cellular-Vehicle to Everything 蜂窝车联网)方面,根据可变车道控制的变化规律,制作多个对应的V2X MAP导入云控平台或RSU,然后系统各单元根据相关指令设置联动下发机制,保证车路协同系统信息(MAP、SPAT)和可变车道控制系统信息(电子标牌变更指令、信号机灯组变更指令)同步对应下发,保证车路协同系统V2I红绿灯场景实现及消息的准确性和稳定性。展开更多
Large cities suffer from traffic congestion,particularly at intersections,due to a large number of vehicles,which leads to the loss of time by increasing carbon emissions,including fuel consumption.Therefore,the need ...Large cities suffer from traffic congestion,particularly at intersections,due to a large number of vehicles,which leads to the loss of time by increasing carbon emissions,including fuel consumption.Therefore,the need for optimising the flow of vehicles at different intersections and reducing the waiting time is a critical challenge.Conventional traffic lights have been used to control traffic flow at different intersections and have been improved to become more efficient by using different algorithms,sensors and cameras.However,they also face some challenges,such as high-cost installation,operation,and maintenance issues.This paper develops a new system based on the Virtual Traffic Light(VTL)technology to improve traffic flow at different intersections and reduce the encountered loss of time and vehicles’travel time.Additionally,it reduces the costs of installation,maintenance and operation over various conventional traffic light systems.Consequently,the system proposes algorithms for traffic scheduling and lane identification by using vehicle ID,priority and time of arrival.To evaluate the system,four scenarios were presented where each scenario uses a different number of vehicles consisting of three types(emergency vehicles,public buses and private vehicles),each given a different priority.The proposed system is evaluated by integrating two simulators,namely,(OMNeT++)and(SUMO),and two frameworks,namely,(VEINS)and(INET)to prepare an appropriate working environment.the results prove that an improvement in the average travel time for several vehicles reaches 44.43%–49.76%compared with conventional traffic lights.Further,it is proven from the obtained results that the average waiting time for emergency vehicles is enhanced by 96.63%–97.63%,while the average waiting time for public buses is improved by 94.81%–97.23%.On the other hand,the waiting time for private vehicles‘improved by 87.14%to 89.71%’.展开更多
文摘随着电子商务的不断发展,道路物流交通所面临的压力日益增长,而车路协调技术的出现为缓解这一问题提供了有效的解决方案。其中,高速公路动态限速系统是提升高速公路通行效率的关键技术。为此,针对高速公路匝道口合流区应用提出一种主路车辆动态限速方法。该方法通过路侧单元(Road Side Unite,RSU)对高速公路主干路和匝道交通状况进行实时感知,从而控制主路车辆的实时行驶速度,使匝道上车辆以零等待方式顺利进入主路,在确保交通安全的同时提高通行效率。而且,文中方法通过了双向耦合车联网仿真平台的验证。该平台通过对网络仿真器和道路仿真器的双向耦合,使车联网仿真环境更加接近真实场景。实验数据表明,文中所提出方法在实现匝道上车辆零等待时间的前提下,提升了主路车流速度94%以上,降低二氧化碳排放量至少20%。
文摘5G车辆需要实现五维协同,让未来的车具有更加强大的数据处理能力,使得交通系统更有智慧。车联网和5G结合,将释放巨大能量。5G车联网不仅要实现车路协同,还要实现'人-车-路-网-云'五维高度协同。在人方面,以MaaS(Mobility as a Service,出行即服务)为核心,为消费者提供一站式出行服务,让消费者成为自由的人;在车方面,未来的车不仅是数据发送和接收方,还是计算节点.
文摘基于路侧感知的可变车道智能网联车路协同系统是将可变车道控制系统与智能网联车路协同系统深度融合组网,其原理是在路口部署路侧感知设备来检测目标路段车流量,在其上游路口部署可变车道交通控制系统,感知设备通过识别当前道路排队长度和平均车速综合判断当前该段道路是否拥堵,然后通过车路协同系统控制上游可变车道电子标牌允许行驶方向,从而控制目标道路的驶入车流量,达到缓解该路段的交通压力的目的。同时,在车路协同C-V2X(Cellular-Vehicle to Everything 蜂窝车联网)方面,根据可变车道控制的变化规律,制作多个对应的V2X MAP导入云控平台或RSU,然后系统各单元根据相关指令设置联动下发机制,保证车路协同系统信息(MAP、SPAT)和可变车道控制系统信息(电子标牌变更指令、信号机灯组变更指令)同步对应下发,保证车路协同系统V2I红绿灯场景实现及消息的准确性和稳定性。
文摘Large cities suffer from traffic congestion,particularly at intersections,due to a large number of vehicles,which leads to the loss of time by increasing carbon emissions,including fuel consumption.Therefore,the need for optimising the flow of vehicles at different intersections and reducing the waiting time is a critical challenge.Conventional traffic lights have been used to control traffic flow at different intersections and have been improved to become more efficient by using different algorithms,sensors and cameras.However,they also face some challenges,such as high-cost installation,operation,and maintenance issues.This paper develops a new system based on the Virtual Traffic Light(VTL)technology to improve traffic flow at different intersections and reduce the encountered loss of time and vehicles’travel time.Additionally,it reduces the costs of installation,maintenance and operation over various conventional traffic light systems.Consequently,the system proposes algorithms for traffic scheduling and lane identification by using vehicle ID,priority and time of arrival.To evaluate the system,four scenarios were presented where each scenario uses a different number of vehicles consisting of three types(emergency vehicles,public buses and private vehicles),each given a different priority.The proposed system is evaluated by integrating two simulators,namely,(OMNeT++)and(SUMO),and two frameworks,namely,(VEINS)and(INET)to prepare an appropriate working environment.the results prove that an improvement in the average travel time for several vehicles reaches 44.43%–49.76%compared with conventional traffic lights.Further,it is proven from the obtained results that the average waiting time for emergency vehicles is enhanced by 96.63%–97.63%,while the average waiting time for public buses is improved by 94.81%–97.23%.On the other hand,the waiting time for private vehicles‘improved by 87.14%to 89.71%’.